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ABST_CT

When this research was started the main objective was to construct hot

neutron star models and to investigate the detectability of these stars. Since then

there has arisen the possibility that some of the galactic x-ray sources recently

discovered might be neutron stars° Hence both cold and hot models were constructed

and their properties were investigated. For this purpose, equilibrium nuclear con-

figurations of dense matter with densities in the range 106 < p <1012 gin/am 3 for

(a), zero temperature and (b), temperatures in the range 2 x 109_T _1010 OK

were studied. Equilibrium concentrations of sub-atomic particles with densities in

the range 1012< p< 1017 gin/am 3 at zero temperature were also studied, and then

a number of different equations of state to be applied to a dense star were constructed.

In the temperature and density range considered, stability shifts to more

neutron-rich nuclei with increase of density. Nuclei of smaller Z become more

abundant and the abundances of nuclei near a peak tend to become comparable

to that of the peak nucleus, with/increase of temperature. When T < 5 x 109 °K,

the transition from heavy nuclei to neutrons takes place at p,-" 3 x 1011 gin/am 3.

At higher temperatures this transition would occur at a lower density. The molecular

weight per electron, Pe, is rather insensitive to temperature changes, On the other

hand its variation with density is somewhat larger (tJe ,-, 2 for p~ 106 gin/am 3,

while for p-,, 3 x 1011 gm/cm 3 Pe ~ 3). At higher densities ( p>1013 gin/am 3)

neutrons become contaminated with other baryons, mesons and leptons.



(ii)

In "real" gas models the pressure is less than that for ideal gas models in

the range 1012 P < 1015 gm/cm 3 but the situation is reversed for io >
O15

gm/cm 3.1

The relativistic limitation on the equation of state prevents the pressure from in-

creasing too rapidly. The properties of neutron stars depend primarily on the mass

and the interaction between the constituent particles, and the effects of hyperons

and of the relativistic limit are minor. The envelope of electrons and heavy ions

is important in some of the least massive neutron stars. The mass and radius of stable

neutron stars range from about 0_2-2 M_ and 25-5 km, respectively. The maximum

mass of a neutron star can be as large as 2 M®. All the models constructed develop

a central singularity at a finite mass and radius, but all the stable models investigated

in this research do not show the Schwarzschild singularity. A small local maximum

above the Oppenheimer-Volkoff crushing point is observed. Red shifts are calculated

to be from about 1% (least massive models) to 30% (most massive models) which

indicates that general relativistic effects are not negligible even near the surface.

Surface properties, temperature effects and cooling are studied for six models

of possible stable neutron stars. For this purpose the opacity is calculated by means

of Cox's opacity code. Model atmospheres are constructed both for a pure iron and

a pure magnesium composition. It is found that the non-degenerate layers are only

a few meters thick and in no case exceed 1% of the stellar radius° V#hen the surface

temperature is about 106 ~ 7 o K the internal temperature _s about 107.5 ~ 9 OK.

For a surface temperature of --, 5 x 107 °K the internal energy and optical luminosity

are N 1050 ergs and ,_, 106 L®_ while for the lower surface temperature of ~ 2 x 104

OK these two values are ~ 1040 ergs and 10 -8 Lg. The cooling process is mainly
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neutrino emission when T > 109 °K but at lower temperatures than this it is

primarily optical radiation. The age of a neutron star of a given temperature

depends on its mass, interaction potential and surface composition, among which

the dependence on mass is the greatest. The cooling behavior is quite complicated,

As a consequence, the possible age of a detectable neutron star can be anywhere

from about 1 day to about 106 years. Low mass neutron stars would be almost

impossible to detect, but intermediate and large mass neutron stars located even

far away (,,, 103 parsec) can keep sufficiently luminous long enough to allow their

detection by instruments above the earth's atmosphere, and it should not be too

difficult to observe them, were the sensitivity of present detectors increased by a

factor of, say, 100.
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INTRODUCTION

Oneof the major puzzles faced by people concerned with stellar structure

problems in the late 1920's to early 1930_s was the determination of the mechanism

of energy generation processes within a star. The method commonly adopted in

those days was to make convenient arbitrary assumptions about the energy sources.

in 1932 Landau (1) proposed that some valuable insight might be obtained by first

investigating the equilibrium configuration of a cold body of given mass with no

energy generation. He argued that for a body of large mass, whose parts are kept

together by gravitational attractiont there exist two possible equilibrium states -

the electron-nuclear state and the neutronic state. It was also pointed out that if

the mass is sufficiently larger the latter state would be more favorable. It was sug-

gested about that time (2) that such a state of a neutronic configuration might be

physically realized in the form of a neutron star_ or a neutron core, at the last stage

of the stellar evolution of a sufficiently massive star.

In 1933 Oppenheimer and Serber (3) estimated the possible minimum mass of

a stable neutron core. The first extensive work on the construction of models of

neutron stars was carried out by Oppenheimer and Volkoff_ (4_ who used general

relativity in formulating the structure equations and assumed that the equation of

state is that of a simple non-interacting Fermi gas of neutrons. Their results showed

that the observable mass should have an upper limit of about 0.7 solar mass. Zwicky(5)

suggested that a neutron star is a possible remnant of a supernova explosion. The

problem of the behavior of a body with mass exceeding the maximum limit was _irst

investigated by Oppenheimer and Snyder (6) in 1939 r



2

From the time of these investlgations until rather recently_ the study of

neutron stars was somewhat neglected. The reason was that as a result of the

progress made in nuclear physics_ the theory of stellar evolution and the study of

white dwarfs, it became generally believed that the end point of stellar evolution

was a white dwarf star rather than a neutron star. The maximum mass of white

dwarfs was calculated by Chandrasekhar (7) to be about 1.4 solar mass, larger than

the limit for neutron stars calculated by Oppenheimer and Volkoff.

In 1958 Wheeler (8) pointed out that the subject of neutron stars would

pose problems both interesting and stimulating in the fields of general relativity,

gravitation theory and high energy physics. Since then the study of neutron stars

has revived. In the work of Wheeler et al, (8) the properties of stellar configurations

at zero-temperature from the white dwarf region to neutron star region was investi-

gated, and a broad intermediate region where the configuration is unstable was

found. The first effort to construct neutron star models of a real gas was made by

Cameron (9) in 1959. In his models, a mean nuclear potential constructed by Skyrme(10)

was usod to take account of interaction forces among neutrons. The maximum ob-

servable mass of Cameron's models was about 2 solar masses. In 1960 Salpeter (11)

investigated various kinds of equation of state for dense matter by a semi-empirical

method and applied these to models of zero-temperature s_ars. (12) Both Cameron

and Salpeter discussed the effect of hyperons but no quantitative calculations were

given. During the period of 1960-1962 a series of papers wore published by

Ambartsumyan and Saakyan (13,14,15) on superdens.e hyperon stars.
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This concludes a brief survey of the history of the study of neutron stars

and other dense stars before research for thls thesis was undertaken.

In studying the previous work1 I noticed that all the models were constructed

with zero-temperature and that the possible temperature effect of the surface layers

was not investigated, with the e:_ceptlon of an interesting discussion in Cameron ls

paper, in his paper/9) Cameron concluded that neutron stars are the probable end

products of supernova processes and that such a star would, after its formation1 cool

off so rapidly that it would escape our observations. However, in an added note_ he

made a reservation concerning this conclusion and polnted out that, if a hot non-

degenerate envelope is formed at the end of the evaporation stage when the gas at

the stellar surface no longer has enough internal energy to expand to inflnlty, such

an envelope might well retain a great deal of the internal heat of condensation

for appreciable periods of time.

! was particularly interested in this suggestion which Cameron made. At

the tln_e this research was first undertaken no investigation of "hot neutron stars"

with hlgh-temperature, non-degenerate envelopes had yet been made, and it was

not known whether there would be any hope for observation, even if they should

exist. I thought that hot neutron star models mlght provide some insight into this

problemr and decided to construct such models in the hope o{: determining the

feasibility of directly obselvlng these stars. Therefore_ my objective when I started

this research was mainly to construct hot neutron star models with hot non-degenercte

outer layers and investigate their surface properties and the effect of these on

cooling and detectability.
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However, since then, the status of neutron star problems has undergone a

considerable change because of the discovery of galactic x-ray sourcesand the

possible identification of these sources with neutron stars. The reccntdevelopment

in this field is reviewed briefly below. In the summerof 1963, Saakyanls paper(16)

was published where an improvement was applied to Cameron's models. Chlu(17)

discussed the over-all problem of neutron stars, both dynamic and static, made

rough estimates of temperature and cooling timer considered some observational

problems, and concluded that while neutron stars are not observable on the earth

they should be detectable above the earthls atmosphere owing to x-ray emlsslon.

In recent years, it has been reported, (18'19'20) through rocket flights in

outer space, that there exist x-ray sources outside the solar system. In December,

1963, Frledman (20) reported that two discrete galactic x-ray sources were detected,

one in the constellation Scorpio with the measured flux of 10-7 ergs/cm2-sec over

o
the wave length range of 1.5 to 8 A t and the other in the Crab Nebula with a

flux about 8 times weaker than the formert and further proposed that they might

be identified with neutron stars. Since then, interest in neutron stars appears to

have grown rapidly, and many papers on neutron stars and galactic x-ray sources

have been published (references 18(b), 19, 22, 23, 24, and 25). Some other alter-

native theories have also been proposed to explain the mechanism of these x-ray

emissions. (21) The data on x-ray measurements are, however, too scarce at the

present time to allow us to draw any definite conc!usions and there is still no means

of deciding against or in favor of some of these possibilii'ies. The most recent ex-

perimental data (20') seems to indicate that the x-ray source in the Crab Nebula
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is not a neutron star but there is a possibility that the Scorplus source is a neutron

star. i wish to emphasize that mere deteiled experlmental data is quite badly

needed, that the models based upon logical foundations and constructed in this

research by straightforward application of physical prlnc_plesl which are

presented in detail in the fol!owlng chapters_ are consistent with all the infer-

mat[on on x-ray measurements so far available, and that there is a good poss!billty

that some of the ga!actic x-ray sources arc indeed neutron stars.

Due '..'othe recently increasing interest in the field, my work has become

extended beyond the original modest plans. For instance, instead of using the

existing cold models for neutron cores, an over-all re-lnvestlgaiion and re-

construction of cold models has bgen undertaken before constructing hot models,

and model atmospheres with two posslblo surface compositions have been constructed

to take the poss_b!e diffusion effect into account.

Chapter I introduces the basic physics governing the internal structJre of

neutron s;'c,rs. Chapter II is devoted io the study of the equilibrium cc,mpos_t|on o_:

surface layers_ Various possible equations o_ sta_e have been _nvesHgated in

Chapter ill. In Chapter iV, models constructed by other_ are introduced firsb and

t.hen models consh'ucted in ._his rese_rch a_e presented. Th_ last chapter, V, is

devoted to the problem ef hot neutron stars_ including the construction of model

atmospheres, the study of surface propertiesr the cclcui_Hon o_ _.Qtat energy contenb

tempe._ature, lu.minosity, and th_ invesHga.iicn of the coollng behavior of various

models of different ages_ and finally the problems of observation and de_'ee_';en_

This researc.h is confined to staHc ;'_rob!ems of neutron stc_s and other dense stars

under hydrostatic equillbrium° The stars are c_ssurned to e:_hik,it spherical syr_rne_ry wi_h

no rotation throughout.
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CHAPTERI

RELATIVISTICEQUATIONS OF HYDROSTATICEQUILIBRIUM

1-I. PHYSICALCONDITIONS IN STELLAR INTERIC, RS

In attacking the problems of the static structure of stars, there

are four basic differential equations which govern the conditions in

stellar interiors. These are generally expressed as:

@L_ _+_T_ f(_)_Cm)
ohm

d_- - ÷_c. :T-_:¢.__(,od,o,vo)

_T =(I_'IT _PYTF

or

(convective)

-J (I-I)

(I-2)

(I-3)

(I-4)

The first two are called equations of hydrostatic equilibrium.

They result from the fact that for a star to be stable, all the forces acting

on any part of the s_ar must be in balance wlth e_ch other. For a

spherical body subject to a centra! gravitational force, this force di-

rected inward must be balanced by the pressure force directed outward.

The gravitational force acting on a volume element 8v is given by

p(r) GM_. 8v , where p(r) is the density at r, G is the constant
r2



of gravltatlon,

M
/l

6v

a differential form of the definltlon of M_

: jr 4_;r2p(r) dr

r is the radial distance from the center to 5v_ and

is the mass inslde a sphere of radlus r. The pressure force on

is - d.PP 8v. Equating the two we obtain (1-1). (1-2) is just
dr

(1-2')

T

The thlrd equation is necessary to fulfill the condition of

thermal equilibrium, that the total energy loss must be compensated

by the net energy genera|{on. The net energy loss per unit time can be

characterized by the over-all luminosity or the energy flux through a

sphere of radius rL_ [ by over-al b any type of energy loss (eog.

neutrino energy Ioss_ etc.,) is meantI. The third equation (1-3) is then

just the law of conservation of energy in differential form.

The two equations in (1-4} are related to the condltion for the

energy transport° There are three means by which energy is transported

within a star: conduction, convectlon and radiation. In most of the

stellar structure problems we encounter_ either radiatlve transfer or con-

vective transfer is most importantc The equations in (1-4) are applicable

to these problems. Here_ dT/dr is the temperature gradianb a is

Stefan's radiatlon constant, c is the velocity of Iighb K is the opacity

of the material or the mass absorption coefficient usually expressed in

cm2/gm, and 1' is the ratio of the specific heats C_/C v.



In the problem of model construction of hot neutron stars,

radiation and electron conduction are more important than convection.

This point will be discussed in Chapter V.

The four differential equations just introduced contain five

variables P, M, L, T and r. One might, therefore, think that if

one is chosen as the independent variable, the rest are determined by

the four equations, provided that suitable boundary conditions are

given. This is true if explicit relations are given through which p(r),

e and K can be eliminated. All of these quantities genera!ly depend

on the composition, density and tempe=ature. That is, they can be ex-

pressed in the form:

P= P(p,T, C)

_¢= _(p,T,C)

= ,_(p,T,C)

where composit_on is expressed symbolically by the letter C. The first

is the equation of state. The three are called the "gas characteristic

re!atlons.. (26)

The boundary condiHons are generally given by

8

(1-Sa)

O-Sb)

(1-5c)

M_ = O, L = O, P = Pc' T :: Tc at r =0 (center) (1-6a)

/v_ = M, k_ = L, P=O, T := 0 at r=R(surface) (1-6b)

where Pc and Tc are central pressure and temperature, M is the mass and

R is the radius of the star.
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For neutron stars_ white dwarfs, or any stellar configuration

of sufficiently high degeneracy and of no energy generation, the

sltuatlon is far simpler, in the original form presented above the

four differential equations are coupled together and it is necessary

to carry out the numerical integration of four equations simultaneous-

ly. However, if there is no energy generation_ e in (1-3) is zero and

the third equation drops out. Moreover, for a sufficiently high

degeneracy, the temperature dependence of pressure drops out and

the equation of state takes the form:

P = P (p) for a given composition.

in this case_ the hydrostatic and thermodynamic ports of the structure

equations are decoupled and the first two and the last two equations

in (1-1)-(1-4) can be treated separately.

in the core of a neutron star where the degeneracy is sufficient-

ly high_ the conduction process is so efficient that the temperature

gradient dT/dr is practically zero and the last equation also drops out.

The conclusion is that the structure problems of neutron stars boil down

to the solution of the first two equations (1-1) and (1-2).

In the outermost part of the star where the density falls to the

non-degenerate region (density low compared with temperature)_ the

temperature effects also must be included in our hot neutron star models,

but, as our results in Chapter V reveal, such non-degenerate regions

(1-5a')



occur only at about a meteror sofrom the surface,while the typical

radiusof a neutronstar is about 10 kilometers, and in finding typical

physical quantities of interest to us (mass, radius, internal distribution

of matter, the maximum mass Iim|t and many other general properties

which are not sensitive to temperature), our cold-body approximation

is perfectly valld; that is, the problem can be solved by integrating

the two hydrostatic equations (1-1) and (1-2) under suitable boundary

condltions and with the proper form of the equation of state (1-5a').

One correction to the above statement is necessary. That is_

the equations of hydrostatic equilibrium (1-1) and (1-2) are derived

from Newtonlan mechanics. As it is to be fully demonstrated soon,

however, the general relativistic effects become qulte important for

ultradense matter such as neutron stars. For instance, the deviation

from Newtonian mechanics is characterized by the factor GlvVRC2r

which, later, is identified with the gravltational red-shlft of spectral

lines. This quantity is about 0.01 to 0.3 for neutron slats (Chapter V )_

while the value of the same quantlty _or the sun and for the companion

to Sirius (a typical white dwarf) is only 2.12 x 10-6 _nd approxlmately

6 x 10-5 respectively.

The conclusion is that for neutron star problems more general

expressions for hydrostatic equilibrium, based on the general theory of

rolatlvity, must replace (1-1) and (1-2). The rest of this chapter is to

_0



be devoted to the derivation of such equations, their general properties

and other general relativistic parameters which are to play important

roles in the problem of neutron stars.

11

I-2, RELATIVISTIC EQUATIONS OF HYDROSTATIC EQUILIBRIUM

a. General Discussion

What is mentioned above can be seen also from tile fact that the

radius of a neutron star is comparable to the gravitational radius,

RG = 2GM/c 2. in such a case, it is not permissible to neglect the

effects of general relativity and the calculations must be carried out

with Einstein's gravitational equations.

The solution of Einstein's equations for the spherically symmetric

distribution of matter is relatively simple and a complete solution of such

problems for the s_atic case was obtained by K. Schwarzschild as early

as 1916.

The most general static line element exhibiting spl_ericai

symmetry is expressed as (p. 239, 24_ of reference 27)

= _(r)dr2 2 2dS2 -e -r dg2-r sln2gd_ 2+ ev(r)dt2 (1-7)

If the matter supports no transverse stresses and if the rnacroscopic energy

density e and the pressure P are measured in proper coordlnatess the folLow-

ing expressions are obtained as the general relativistic equations of

hydrostatic equilibrium:
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d u(_.)_ 4-'rr e (p) n__
drc -

_ ( P+ _cp_)) (/+_T_S? +

(1-8)

(1-9)

In (1-8) and (1-9) a system of units is adopted which makes G = c =1,

where G is the gravitational constant, c is the velocity of light, u(r)

is a quantity defined by

I }l. ( I -" (_-/X) (1-10)

which characterizes the quantity of matter enclosed wlth_n a sphere of

radius r, and its value at r = R is to be later identified with the mass

of the star as perceived by a distant observer. The derivation of (1-8)

and (1-9) is to be given below before going into further details.

b. A Summary of Some Fundamental PHnciples of the Theory of General

Relativity

As in the case of many problems involving general relativity, we

can start wlth (27)

(1-11)

and

-SqTT _D -  UO+A
2. (I-12)

where the first expression is the most general form of an interval in

Riemannian space and the second is the field equaHon of Einstein°
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gHv is the fundamental metrical tensor, THv the energy-

momentumtensor, Rlay the contracted Riemann-Chdstoffel tensor,

R the invar|ant obtained by further contraction of this tensor, and A

is the cosmological constant. Here again, G and c are set equal

to 1.

The fundamental equation of mechanics in the language of

general relativity is then given by

(T
fl-13)

where

The contracted Riemann-Chrlstoffel tensor is defined by

In proper coordinates the energy momentum tensor is written as(27)

T aO=
0

pO o o
xx Pxy Pxz 0

pyO pO pOx yy yz 0

pO o pO 0
zx Pzy _.z

0 0 0 ¢ 2 Poo

(I-14)

(i-15)

0-16)



The transformation from the proper coordinates (xol, Xo2

Xo3 Xo4), the coordinates so chosen that the matter in question is at

rest with respect to the spatial axes, to other arbitrary coordinate

systems (x 1, x 2 x3 x4) is provided by the relation

T __ _ 9_ _ _/_
- %

14

(1-17)

where the subscript zero denotes the quantities in proper coordinates.

Important simplifications are possible in the case of a perfect

fluid, that is, for matter in which there are no transverse stresses and

no mass motions, in that case it is known (27) that (1-16) reduces to a

simpler form

-P 0 0 0

Toa_ =
0 -P 0 0

0 0 -P 0

0 0 0 e

where P is the pressure and e is the energy density as mea:ured by

a local observer.

Using the definiHon of proper coordinates, with the help of

(1-18), equation (1-17) reduces to

ds d_

(1-18)

0-19)
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The most general expression of a static line element in spherical

symmetry is given by (1-7). Substituting the three-index symbols

{I 4 I,', b} of (1-14) (evaluated for the ilne element (1-7)) into the ex-

prossion for R14v

field equation (I-12), we are led to

in (1-15), and substituting these R14zj into the Einstelnts

(1-20a)

S Tp:-s TT2:-

4- 4-

÷ ;'( 2_' ' )+'_=_T£-_ _ ,z_ _
as the only non-vanishing terms of the energy-momentum tensor, where

(I-20b)

(1-20c)

the primes denote differentiation with respect to r. The cosmological

constant A has been dropped in above derivations, because it is

negligible in most stellar problems including neutron stars. From the

above three relations, the following is easily deduced:

/ --o
m. '_ (I-21)

which is the relativistic analogue of the Newtonian expression (1-1), or

d.PP+ _ = 0 where (._ is the Newtonian potential.
dr dr

C.
SchwarzschildSs Exterior Solution

In the empty space surrounding a spherical distribution of matter,
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I all components T_a should be zero. Apply|ng this condition to

(1-20a) and (1-20c), we obtain

Combining this with (|-20b), we are led to

(1-22)

v" + _,2 + 2v'_ -" 0
r

Integrating this twice, we obtain

(1-23)

D

eV=a +
b

r
(1-24)

where a and b are constants of integration.

Noting that the line element (1-7) must approach the special

relativity form as r goes to infinity, dS2-* - dr 2 - r 2 dg 2- r 2

d ¢p2 dt 2, ;k evsin 2g + and thato = = 1 in that case, a is set

equal to 1. If further, the constant b is set equal to - 2 M, we have

= -,X(r)e l)(r) e = 1-2M/r for r _- ,_ (I-25)

Substituting (1-25) into (1-7) we obtain

dr 2 r2 dg2 r 2 ¢2 (1
dS2 = (I - 2M.._._) - sin 2gd +

r

- -_)dt 2 (I-26)

The constant M appearing in the above expression will soon be shown

to be the total Newtonlan mass of the star as calculated by a distant

observer (Section I-4b).

|



d. Schwarzschildls Interior Solution

Under the condition that the pressure be zero at the surface

and that the energy density e be constant in the interior, (1-20c)

can be integrated to give a result:

-;h, 8 _r e r2e -] " "'7

_T

(1-27)

where the constant of integration has been set equal to zero to remove

singularities at the origin.

e and

To obtain a solution for v t we first integrate (1-21)_ eliminate

P through (2-20a) _nd (2-20c), eliminate X through (1-27),

and obtain

eV/2( 2 v' rv' _ 3
+ 7-. - r--,2--i = const where r 2 _r° o 8=e

0

After integration, we get

: A - B(1- r2/ro2)½ (]-2s)

where A and B are c_nstants of integration.

Making the pressure zero at the boundary r =R_ and lhe interior

solution fit smoothly at r = R to the exterior solution (obtained in

sub-section c)_ the constants are evaluated. The results are
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A= _3 (1 - r 12/ro2)_ , B = 21 where ro and r 1 are

3 4"Tr 3
ro2 _ 8 1i" e 3

defined by _,M- er 1

18

(I-29)

(:IS2-

With these values for the constants, the interior line element takes

the form

O-

+CA-
In order for the solution to be real, the conditions that

(I-3O)

(1-31)

must be satisfied.

e, Derivation of the Relativistic Equations of Hydrosfatlc Equilibrium

By tile use of the equation of state e =e (P), equation (1-21)

may be infegrated:

POe)

)) (_): 9 (R)- p_ Pi

Taking the exponential of each term,

0

(1-32)

(1-33)



The constant ev(R) is determined by making ev(r_) continuous

across the boundary° Then, from (1-25), we get ev(R) = I - 2/v_/l_.

From the definition of u(r) as expressed in (1-10), we have

e = 1-2u/r

Then (1-20c) becomes

du(r)

In (1-20a), e" and

= 4= e (P)r 2

v' are eliminated through (1-34) and

(1-21), and it becomes:

dP _-(P+, (P))[4, r3p÷ u!
dr r(r- 2u)

The last two equations represent the relativistic analogue of the hydro-

static equations, which were already written down in (1-8) and (!-9).
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(1-34)

I-3 UNITS TO BE USED IN RELATIVISTIC CALCULATIONS

in all the discussions above and hereafter, the system of units

which makes G = c =1 is to be used, unless otherwise indicated, so

that energy and mass will have the same d_mensionallty. Furthermore,

it is convenient if a system of units be used whicl_ gives the same dimen-

sionallty to both masses and distances° In this case _ =1 also.

in addiHon, in actual calculations the numbers we are to deal

with become enormously large (M "_- 1033 gin, R ,-_106 cm, etco) if



c.g.s, units are used. Noting that the mass and radius of a neutron

star are of order of magnitude of about i solar mass and 10 kilometers,

numerical calculations are much simplified by the adoptZon of a system

of units such that the distance, mass, pressure and density in c.g.s.

units are obtained by multiplying the respective quantities obtained

in this system of units R, M, P and p by conversion factors Rot M o,

Po' and Po as defined by

R =_¢_"_ (h -3/2 ¢ =1.37x 106 cm=13o7km "v10"5 Rg

o MnC

Me = _ c2/G = 1.85 x 1034 gm = 9.29 Mg

Po = (Mn 4 .cS/32 T;2"53) 4: = _: n4 :; = 6,45 x 1036 dynes/cm 2

Po= r/= 2)4= --

where

Kn n

Po,/r_2 =7.15 x 1015 gm/cm 3

= 10352"h3 5.12 x

M n is the mass of a neutron, "_ = h/2Tr, h is Plank's constant.
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(1-35)

i-4o GENERALRr:.._,,T!VISTIC _UANT!T].ES

There are several characteristic quantities of general relativity

which are important in the problem of neutron stars. Some of these are

introduced below.
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a. Physical Meaning of the Metric Tensor gH v

was originally introduced as the components of the metricgjJv

tensor in the most general expression of an interval in i_ier_annian

= dx P dxV(1-11). Its importance is_ however_space_ as dS2 gls v

multiplied through the principle of equivalence which connects tile

metric and gravitation so that the metric for a flat space-tlme in the

presence of any permanent gravitational field corresponds to the metric

for a curved space-time without a gravitational field° Because of thls_

it is possible to regard gtsv either as the components of the metric

tensor in the form of (1-11) or as the gravltatTonal potentials through

the relation (1-12) in the Einstein theory of gravitation. A close

connection between _ v

potential, is seen below°

grr (r)

and (1-1 i),

and _/= GM , the Newtonian gravitational
r

The radial component of the metric and the time component,

and g44(r) for a spherically symmetrical space are_ from (1-7)

X(r) v (r)
grr(r) = - e and g44(r) = e .

in an empty space outside a spherical distributlont they take the form

grr(r) = - (1 - 2M/r) "1
(

1 for r

g44(r) = (1 -2/vV'r) =-
grr (r)

(1-36)
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as seen from equation (1-26).

found from (1-34) to be

grr(r) - - (1 - 2ru_(r))'l

The radial component in the interior is

for r < r (1-37)

The time metric in the interior is obtained by applying the requirement

that the chemical potential be constant under the statistical equilibriumf 63)

For a cold-body the chemical potential

is simply the Fermi energy (including the rest mass). In the presence of

a strong gravitational field, the energy, corresponding to the fourth

¢omponeni of the energy-momentum tensor, must be multiplied by a

proper function of the fourth component of the metric to take care of the

gravitational effect. We have namely the relation

/g_4(r) (Mk2+ Pk2(r))_---v_g44(R)(Mk2+Pk2(R)) _ -const

for dense matter of spherical symmetry, where M k is tho mass and

Pk is the Fermi momentum of one of the particles, k, which

constitute the body of interest and _ is the radius oF this body. For a

pure neutron gas, the particles k are only neutrons, n. In this case,

the above relation is simplifled to

2M tn (r))-1 for r _ R (1-38)g44(r) =(1 --_-') (cosh 2

in,the interior of a neutron start where t n = 4 sinh "1 (Pn/MnC), in

the above derivation, the relation Pn(?,) =0 was used.
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The physical meaning of these expressions may become somewhat

clearer if we note that in the system of units we are employing where

M and outside
G = 1 and ¢ = It the Newtonian potential is just _ =- 7-'

the star, we see from (1-36) that the radial component g44,(r) and the

time metric g44(r) become

grr(r)=-(I +
r ]> R (I-39)

g44(r)= 1 +2-_

The last equation in (1-39) is identical with the relation between the

time metric and Newtonlan gravitational potential in a weak gravitation-

al field (e.g.p. 199 of reference 27). In the absence of a gravitational

field, the corresponding space-tlme is "flat", and grr =- 1 and

g44 = 1, -_ =0. The above argument points out that the quantity -2_= 2M/r,

or 2G/Vl/'r_ 2 in ordinary unlts_ gives a measure of the deviation of the

components of a metric tensor from their values in flat space-tlme, or the

degree of curvature, whlch in turn gives the strength of the gravitational

field° From the above expression, we see that the greater the mass for a

fixed radiust in other words, the denser the body, the greater the deviation

of g44 from unity. When finally 2/v_/R becomes 1, g44 =0 and grr =-. co.

It was mentioned earlier that the quantity G/'_v/Rc 2 is about 0.1 for a

typical neutron star; in this case g44 is about 0.8 at the surface of the

star and the 20% devlaHon is certainly not to be neglected. In the interior
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the deviation is larger still and this is why the problem of neutron

stars must be treated by the theory of general rclatlvity.

In a gravitational field actual distance and time intervals

are determined from the same quantities measured in proper coordi-

nates_ in a spherically symmetrical body the length contraction

occurs only radially and the actual radial distance and time inter-

vals are determined by

"
and

i

e ct -(I
(1-40)

(1-41)

The corresponding proper volume element is

(1-42)

For instance, the actual stellar radius

P_
Ro is found from

(1-43)

and the total number of baryons in a spherical body of a baryon gas is

found from

0
(1-44)



where n(r) = _" nk(r) is the total baryon number density at r.
k

In the above expressions Ro_ the proper radius_ is the actual radius

of the s_ar while R is defined as the radial distance from the center

of the star to the boundary where the density become

zero, which is the radlus of a star as seen by a distant observer.

b. Gravitational Mass and Proper Mass

Equation (1-8) can be expressed as u(R) _.for 4 _e (P)r2 dr;

comparing this with a definition of the total Newton|an mass of a star

JoR 4_ p r2 dr, we see that u(_) in general relativity corre-M

sponds to the total Newtonian massof the star as calculated by a

distant observer. It includes not only the sum of the rest massesof the

constituent particles, but also the Fermi energies of the constituent

particles and the gravitational effect. This is clear from the fact that

we are integrating over total energy density e (P), rather than the sum

= Z nk h'lk .of matter densities Pm k

Noting that the interior solution and the exterior solution of

the field equations for spherical symmetry must be joined smoothly,

equation (1-10) at the boundary r =2, is shown to become

u(,_)= ½R(I-e -x(P'))= ½ _(I- (I- 2A:V'R))= A:,

through the help of equation (1-25). That is, the so far undefined

25



D

II

constant M introduced in (1-25) is indeed idenHfled with the

total Newtonlan mass of the star as measured by a distant observer.

The mass M or u(R) obtained in this way is called the

gravitational mass or the observable mass because it is the mass

determined from its gravitational effect on a distant test particle_

which is as the mass actually observed by a distant observer, for instance_

the mass of a neutron star as seen from the earth.

Proper mass is defined as the mass measured by a local ob-

server. It is obtained by integrating the proper matter density

Pm = _ nk Mk over the proper volumo of she star dvp = 4_e _/2 r2 dr.
k

In differential form it is written as

 Mr=

This corresponds to the mass the star would have if its particios were

dispersed to inflni-_y by the gravitational binding energy, in mass units,

26

(1-45)

c. The Gravitational Binding Energy

The gravitationai binding energy M B in mass units is the

difference between the proper mass and gravitational mass_ and may

be obtained by integra'_ng the following dlfferenHal equc_tlon together

with (!-9): _ 1/2.

pro(P) is matter density while e (P) is energy densi_'yo
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We know that the most stable configuration is the one with

minimum total mass, and from that we see that no stable stellar con-

figuration (in the form of a star of finite dlmensions_can exist if the

gravitational mass is greater than the proper mass° !n that easet par-

ticles would be dispersed to infinity rather than being kept together

in the form of a star.

d. Schwarzschiid Singularity

Examining the expression of a line element such as equation

(1-26), we note that for the solution to be real the following in-

equality must be fulfilled; i_ > 2M

or in ordinary units:

2GM

R > RG= _c2
fl-47)

The limiting radius RG is caJled the "gravitational radius."

When R =R G, a singularity occurs. This _s called the Sehwarzsehild

singularity. The Schwarzschild field, therefore, has a singular spherical

2GM besides a singularity at the origin which is
surface at r =

G

inherent in a Newtonian gravitational field also. On this surface, the

component g44 vanishes and grr becomes infinite.

At least a part of this singularity appears to be attributed to

the choice of the coordinate system. For instance, if the line element



is expressed in isotropic form as (oquation 82-14_ p.205 of reference 27),

2

the Schwarzschild slngularity (a singularity other than that at the origin)

does not occur.

V/hen we use hydrostatic equations in the form (l-J) and (1-9)_

we have to be careful that the condition (1-47) be fulfilled always. For

a star of about one solar mass, the gravitational radius is about 2.6 km.

The radius of the sun is about 7 x 105 km and there is no danger of

violating the condition (1-47). For a typical neutron star the radius

can be less than about 10 km and for some of the models of densest

neutron stars it may be worthwhile to keep this limitation in mind.
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e. Gravitational Red Shift

One of the most powerful experimental vorlfications of the

theory of general relativity was based upon the phenomenon known as

the "red shift," which is the shift of spectral lines toward lower frequen-

cy due to the difference, between the stronger gravitaHonal field at the

point where the light is emitted and the weaker f_eld where it is received.

The proper period is seen from (1-26) to be
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The wavelength X of light at the moment of emlsslon at the surface

of a star is cd r, where c is tile velocity of light, while the wave-

length of the same light ray at the moment of arrival at the observer

on the earth will be X + 6_k = cdt, where 8X is the difference in

wavelength at those two moments, and dt is the coordinate perlod.

Taking the ratio of these and using (1-49), we obtain

(]-5o)

Or, convertlng to ordinary units,

mc - - R
where M 0 is the mass of the sun.

The shift is negligible in most of the stars but is quite important in the

case of neutron s'?arsas mentioned earlier. A detailed analysis of this

effect is to be given in later chapters after the resuffs of the models con-

structed in thls research are presented.

More rigorous derivations of (1-50) are found in some standard

textbooks on general relativity such as Tolman, (27) Bergman and Landau

and Lifshitz.



I-5, INTERPRETATION OF TERMS APPEARING IN RELATIVISTIC
-- I

'I-J_'DROSTAT IC: E_ UA-['I'_'I_IS

For this purpose, it is convenient to rewrite (1-9) as:

are defined aswhere q and

_ R3
? is the mean density ofastar, thatis, M =-_ 7r _ . _ (R) is

recognized to be a red shift as discussed on the _:receding page. u(R)

or M has already been identified with the gravitational rr,ass and in

the above expression u(r) has been replaced by an expression M(r),

also, the energy density e (P) has been expressed as p(P), so that the

first term would take the form of the familiar expression o_: Newtonian

mechanics°

Without the last two terms, (1-51) is identical with (1- 1 ),

noting that in our units G = 1 in (1-51)o As it was noted, p(P) in

(1-51) is energy density but in a weak gravitational field where _ (P)

is low, e is practically the same as the rest mass density Pm" (The

total energy may be expressed as the sum of rest mass energy, kinetic

energy and potential energy but in the low density limit all the terms

other than the sum of the rest mass energies of the constituent particles

become negligible compared with the latter.)

3O

(1-51)

(1-52)



The reason for the appearance of pressure P and energy

density p (P) in the second term (10(P) + P) can be seen as follows.

The energy-momentum tensor Ttsv was introduced into Einsteln_s

field equation (1-12) to express the distribution of matter and energy

in the theory of relativity, in the same way that matter density p was

introduced into the Poissonls equation |n the Newton|an theory of

gravitatlont

8 x 2 8 y2 8 z2

and, therefore_ the gravitational potential in Newtonian mechanics "_

and the metric glS v in Einstein's theory correspond to each other.

In a perfect fluld_ as has been assumed in the above derivations, we

have seen that the pressure and energy density appear as the components

of THv _ the same energy-momentum tensor:

T11 sT22 sT33 =- Pand T44-e.

That is_ the energy-momentum tensor is determined by the proper pressure

and density. Furthermore_ we note that in the absence of a gravitational

fieldr the energy-momentum tensor reduces to T44 =_ and all other

components =0 (p. 200 in reference 2_. That is, lo(P) in (1-51), the

same as e in the aboveerepresents all the macroscopic energy densities

as seen by a local observer in the absence of a gravi.:at_onal field and

the effect of the presence of a spherically symmetric gravitational field
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in a perfect fluid is represented by the non-vanishing components

T11 = T22 =T33 =- P, where P is the pressure as seen by a local

observer. Therefore, it is quite natural that P appears together with

energy density in the general relativistic express!on (1-9). With a

decrease of the strength of a gravitational field P becomes much

less than p (P) and the second term approaches unity. With a decrease

in the pressure term as compared with the density term, we see from

the first of equations (!-52) that r) goes to zero. _ , the red-shift,

has been seen to be proportional to the gravitationa! potential _ (1-50),

and this term also vanishes in the limit of weak po_en_iais. Therefore,

the last term also approaches unity as the gravitational field is decreased,

and the expression (1-51) does lead to (1-1)_the simple 1'4ewtonian form.

It may be worthwhile to note that GM/'Rc 2, the e_pression for a

red-shift, is also identified with the ratio of the gravitaHonal energy

to the rest mass energy. When the former is small compared with the

latter we expect the general relativistic correction to be small, else.

It |s to be shown later, quantitatively, that the last two correction terms

in (1-51) are rather significant in neutron stars and that the use of

1'4ewtonian approximation (I-1) in place of (1-9) or (1-51) gives a

serious deviation from the correct answers even for some of the l ightest

neutron stars.
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CHAPTERII

COMPOSITION OF SURFACELAYERS

1!-I GENERAL REMARKS

33

From the brief introductory discussion in the previous chapter

we can see that the stellar composition enters the structure problems

of neutron stars through the equation of state (1-5a'). The deter-

mination of relative abundances of components of the neutronic core

(or hyperon core if the density is sufficiently high) is not too compli-

cated, and that is done in the next chapter where the equation of state

is the major topic. However_ as is seen in what follows, a thorough

treatment of the abundance distribution of the constituent elements

near the surface is quite complicated, and I find it necessary to devote

one whole chapter to that purpose. It is expected that the non-neutronic

outer layers are very thin and in most of the previous work on neutron

star models such regions were simply neglected. However, one of the

aims of this research is to construct models which lead to as realistic

results as possible, the corrlposlte equation of state of which includes

the exact composition change in the outermost layers.- Salpeter (12) has

already pointed out the possibility of non-neg!_gible effects of en-

velopes on some of the lightost neutron star models (by "llghtest" the

lowest densities allowed For a neutron star is meant)°
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In general stellar structure problems, there are various ways

of determining the composition of stars. Reasonable theoretical

estimates are posslb!e through the theory of stellar evolution and

nucleosynthesis. It is not the purpose of this thes_s to go into any

details of stellar evolution. However, it is worthwhile to point out

that a sensible estimate of the composition of the surface layers of

neutron stars is available through the study of the theories of some of

the latest stages of stellar evolution (for instonce, supernova ex-

plosions, white dwarfs, etc.) and with the help of nuc!eo_enesis.

Good review articles clong these lines are _ound in such references

as 9, 17, 28, 29, 30, 31, 32, 33, and many others°

Accord.Tng to the theory of nucleogenesis, the synthesis of

elen:_nfs is belleved ._ostart wl_h hydrogen. The hydrogen burning,

which transforms hydrogen to he_ium_ and hel;um to the isotopes of

carbon and oxygen, is responsible for the major part of the energy

production in stars. Besides these, the s (meaning s!ow time scale

neutron capture), a, and e (meaning equilibrium) processes, etc.,

are responsible for the synthesis of heavy elements in the iron group

from light el_ments llke C, O, No, which are first trans_ormed to medium

weight elements such as Mg, S, and Si. The general trend is that as a

star becomes older its internal temperature and density is increased

through nuclear energy generation and gravitational contraction.



\Vith the increase in temperature the Coulomb barriers are overcome

one by one, and more nuclear reactions of grea._er comploxity in-

volving heavier elements become possible. According to this theory t

the main composition of older stars should be hydrogen while greater

abundances of heavier elements should be expected in some of the

newest stars and newest star clusters. The last statement is fully sup-

ported by observational facts. Neutron stars are thought to belong to

the last stage of stellar evolution. Therefore, even though we may

not know the exact path through which the star has reached this end

point, we can at least assume tllat _t has gone through tl_e series of

nuclear synthesis (w,hich was briefly summarized above) to a certain

extent, though we may not know hovl far it has proceeded and how

high a maximum temperature it has reached in its life history before

it has cooled to the last stage. The dynamic problem of neutron stars,

llke the exact ,mechanism of the formation of a neutron start is out-

side the domain of the present research.

However, after having studied some of the theories of the

latest stages of stellar evolutlont especially of supernova explosions

in references such as 9, 17, 29, and 32r I believe it to be quite possible

that neutron stars are the end products of supernova exp!oslons, and

that the central temperature of the stellar configuration just before

cooling to ferm a neutron star is as high as or even higher than several
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billlon degrees. If the cooling takes place fast enough so as not to

allow any appreciable change of composition (through any trans-

formation processes), then we expect that the composition in its higher

temperature stage is kept as the final composltion even after cooling.

This is a rather rough statement and more detailed explanations are

given later. However, the point is that the neutrino energy loss which

is responslble for a collapse of the core in a supernova explosion

supplies an ideal mechanism for such a sufficiently quick cooling.

Therefore, by investigating the configuration of matter around that

temperature (the temperature where the freezing of the elements takes

place), for any given density, it is possible to estimate the radial

distribution of composition, if we know the radial distribution of

density in a neutron staro

As is shown in more detail in the following sections, at temper-

atures exceeding a few billion degrees all nuclei are subjected to

photodlslntegrafion. That is_all manner of nuclear processes ((1', a),

(1', P), (1', n), (a, 1'), (P, 1'), (n, 1') and (P, n) reactions and others

involving heavier nuclei) occur in great profusion. It is obviously

hopeless to try to follow these reactions in detail, and in developlng

a theory we must resort to the method of statistical mechanics, that is_

we can find the abundance distribution of nuclear species with the

assumption that the whole configuration is in statistical equilibrium_
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The generally knownpropertiesof the equilib_ium con-

figurations of nuclear matter in this temperatureregion (abouta few

billion degrees)are sketchedbelow; if the density is less than about

107 gm/cm 3, the equilibrium configuration consists mainly of elements

in the iron group which have the greatest average binding energy per

nucleon when the temperature is less than about 5 x 109 °1,% For

higher temperatures a phase change to helium occurs under statistical

equilibrium. For a higher density, the transition temperature to helium

becomes somewhQt higher and the equilibrium configuration for temper-

atures below the transition point shifts to the neutron-rlch side of the

heavy element valley of beta stability. The detailed investigation of

those elements as a function of density at zero temperature as made

independently by Salpeter (11) and V/heeler (8) are discussed in a later

section and are re-_nvestigated by the writer (!1-3), The general

trend is that as the density increases, the presence of more neutron-

rich elements becomes energetically more favorab!e and finally a

transition to a free neutron configuration takes place at a critical

density.

As will be revealed in a later section, _he density in a neutron

star is almost constant in the interior until we come to the very edge

of the star. Therefore, as we go outward near the surface, a sharp

change in composition from an almost pure neu._ron configuration to

3?



various degrees of neutron-rlch heavy elements with ioni:ed electrons

from layer to layer is expected, the final transition being to the iron

group elements in the outermost layer.

in the following sectbns these points are investigated in

detail, and some quanti_atlve results are presented. However, before

that there are several physical quantities to be introduced and cal-

culated.

11-2. SEMI-EMPIRICAL A'tASS FORMULA AND

THE NUCLEAR BINDING ENERGY

One of the most fundamental physical quantities appearing in

the later calculations is the nuclear binding energy. For elements

available in the laboratory it is best to use the experimental data°

In most of the regions of temperature and density with which we are

presently concerned, that is not the case. However, with the help of

the semi-emplrlcal mass formula originally introduced by V.'eiszacker

and improved by various authors this difficulty has been overcome.

In simple form it can be expressed as

Q =E a 1 A + a2 A 2/3 Z2/A 1/3- =- +as +a4(N-Z), (2-I)

where Q is the nuclear binding energy, the first term on the right

hand side is a volume term_ representing the energy per particle
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in infinite nuclear matter_ the second term gives a surface energy

which takes care of the unsaturated "bonds" of those nucleons on the

surface and is repulsive in effect, and the third is the Coulomb

repuls:ve term which is just

_ssPC_)fc_')_" 3 z_e_ 3 7-__z' =-- - (2-2)

I_- _'1 or R -% ,_oA)/3

The last term is a symmetry volume energy, representing an additional

energy required to express the tendency of nuclear matter toward

equality oF neutron and proton numbers. In equation (2-1) and in all

discussions hereafter, "A" denotes the mass number, Z the atomic

number or proton number, and N the neutron number. In the above,

a 1 , a 2, a 3 and a4 are characteristic constants. Besides those ap-

pearing in (2-1), the addition of an extra term which expresses addlonal

stability of nuclei with paired neutrons and protons, called a pairing

energy, is required in a more complete treatment. In evaluating the

Coulomb term in (2-2) the simple formula for a nuclear radius R

A1/3
R = r° (2-3)

was used (where r° = 1.22 x 10 -13 cm), if the charge distribution is

uniform. The seml-empirical mess formula is reoarded as one of the

most successful outcomes oF the liquid drop model, but in this model

some other important ef;ects llke shell effects are completely neglected.



For someof the problemswe encounter this neglect is not justified.

To take care of the fluctuations in nuclear masses related to shell

structure, a number of efforts have been made, in most of which some

analytical correction terms were suggested. Good review artlcles

are found in references 34 and 35.

In my present calculation it was thought to be most approprlate

to use the revised formula of Gameron, (36) which is valid for most of

the regions of A except those corresponding to the lightest nuclei,

where all the terms discussed above and more are included.

It is expressed in the form of mass excesses in Mev as

M-A = 8.367 A-0_783 Z + E + E + E + .c + S(Z, N) + !:(2_, N) (2-4)
V S c ex

where the subscrlpts v, s, c, and ox denote the volume, surface,

Coulomb and Coulomb-exchange energy respectively. The symmetry

term is included both in the volume and surface terms. S(Z, N) and

P(-, N) are the empirical she!! correctlon and palHng energies, whose

numerical values for every N and Z are tabulated in re_crence 36.

The analytic expresslons of the first four terms are:

E :a [ 1 _ (A'2Z)2] A (2-5a)
v a A 2

Es= y [1 - q) (A-2Z) 2 0.62025 2 A2/3
T A 2 _ [ 1- A2/3 ] (2-5b)
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Z(Z-1) 1,5849 1.2273 1.5772

Ec = 0.779 A1/3 [1- A--_ + _A + A 4//3]
(2-5c)

Z 4/3 0o57811 0.14518 0°49597

=-0,4323 1,/3 [ "1- A1 "Eex A /3 A2`/3 + A
1 (2-5d)

The constants {3 and _ were determined from the position of the

valley of beta stabil;fy and the constants a and y were deter-

mined by a least-squares fit of the reference mass formula (the ex-

pression (2-4) without the shell and pairing terms) to experimentally'

measured atomic masses. The results are:

= 31.4506 Mev, _ = 44.2355 Mev_ a =-17.0354 Mev, 7 = 25.8357 Mev.

In the expression for the surface effect Ed the term with the

coefficient ¢,/7 is a symmetry energy correction and the second

bracket [1- 0,62025 2
A2/3 ] is due to the trapezo.del radial model used,

where the boundGry is considered to be diffuse and ill-defined. This

is a more realisHc model than those with sharply defined edges. Thaf is:

R = 1.112A1/311 0.62025,/A 2'/3] x10 -13- cm (2-6)

The exchange Coulomb energy arises from the correlaHon in the motion

of the protons within the nucleus.

The results of Cameron's formula are discussed and compared

with the work of others in reference 35, where the maior cause of the



rather large deviations in the region of I ightest nuclei is attributed

to an overestlmatlon of the Coulomb exchange term for those nuclei.

However, an inspection of this paper indicates that the fit is, in

general, excellent in the range of 28 < A < 250. The range of our

major interest is safely within this limit.

The physlcal quantitles of our particular concern, namely the

nuclear binding energy Q, the neutron binding energy e n which is

the energy in Mev required to remove one neutron from the nucleus

(At 2L), the negatron decay energy e" which is the energy in Mev

available for negative beta emlss_on from the nucleus (A, 2.) to the

+
nucleus (A, 2. +1), and the positron decay energy e which is the

energy in Mev available for positron emission or e!ectron capture

from the nucleu_ (A, Z) _o (.At ;_.-1), are obtained through the fo!iow-

ing relaHons derived from the definition of the respective quantity:

Q =Z Mp C2+NMn C 2- MC 2 =- [Ev+Es+Ec +Eex +S(Z,N) + P(Z,N)]
(2-7a)

e n = O(Z, N)- Q(Z, N- 1) (2-7b)

142

e" =Q(Z+ 1, N-1)-Q(Z, N)+0,783 (2-7c)

+
e = Q(Z- 1), N +1) - Q (Z, N) - 0_783 (2-7d)

. C 2
where (M n h_p) =0o783 Mev was u_ed. (2-7e)



Equations (2-5a) through (2-5d) _ th the known values of the constants

are used in the evaluation of (2-7a). For S(Z, N) and F(Z, N) the

numerical values lhted in reference 36 were used. The quantities Qe

en,e" and e+ were computed in this manner for I,,< Z_<80 and

with each Z for Z_< N _, 57.. ,The range of Z is extended up to 90

with the same range of N in the computation of Q. The results are

stored in tabulated form.

The comparison of these results with experimental data (as in

reference 37) shows an excellent agreement. For instance_ for 32Ge 67

the experimental Q value from reference 37 is 578.190, Our result

is Q = 578°2255, and the discrepancy is less than 0.1%_ A similar

check was made for 30 other elements chosen at random from the whole

range, and as far as the exForlmental data offers values {:or comparison

the agreement was {:ound to be within 0.1% for a!! the elements with

Z>12, For I_ghter etemenis with Z_8, our resul,_s are not rellabJe.

The resu!ts of this section were used throughout the following

computations whenever our range went beyond the region of experi-

mentally determined ma_ses.
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II-3o EQUILIbRiUM CONFIGUP_TION FOR A COLD DENSE MATTER

ao General D:scussion

It is a well-known fact of statistical mechanics that the mosl

stable element (Am' Zm) in equilibrium is obtained by maximizing the
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total nuclear energy per nucleon with respect to A and Z. In the

presence of electron degeneracy a slight modifEcation enables us to

use a similar argument.

Consider a nucleus (Z, A) and a nucleus (Z-l, A), and

assume that the former is stable against a disintegration to the latter

by the amount of energy eZ in the absence of electron degeneracy.

Suppose an electron degeneracy with the amount of Fermi energy EF

enters. As soon as EF becomes equal to or greater than eZ _ (Z, A)

will no longer be stable, the conversion to (Z-l, A) by the inverse

beta process, e- +(Z, A)_'- (Z-l, A) + v, will occur_ and the stabili-

ty will be shifted to the latter element. In general, even Z and even

A nuclei have larger value of e Z and if EF > eZ two succes;_ve

inversQ beta decays will usually take p!ace to (Z-2, A), If the Fermi

energy EF is !arger than eZ.2_ the beta decay energy of (Z-2_ A),

another set of inverse decays will follow, and so on_ This will con-

tinue until the beta-decay energy between the nuclei gets larger than

EF. The larger the _i: the greater is the expec'_'ed shift from the

orlginaJ valley of beta-s_-abillty.

Taking this into accounb the quantity we are interested in is

now the energy of the nucleus plus Z electrons relative to "A" free

neutrons, which can be expressed as (B-Z E_F) where B is the total

binding energy of the nucleus and E"F is the Fermi energy of the
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electron gas minus the neutron-hydrogen rest-mass energy difference.

The most stable element is then obtained by maximizing the

quantity

(B*/A)= (B/A)-(ZE'F/A)=

b, Results of Others

Salpeter used this method to determine the composition of

dense matter at zero temperature. His final results given in refer-

ence 11(b) are listed in Table la.

TABLE la

The Fermi energy and correspnndinq 9er,_ity for transitions under equilibrium con-
ditions between various nuclei by E.E,, Satpeter, taken from referencu 1i (b).

I(Z,A) (26,56) (28,62) (28,64)(28,66) (28,68) (30,76) (30,78) (30,80) (32,90) (38,120-)n

-"lu- Z 2.15 2.22 2°28 2.36 2_.43 2_53 2.60 2°66 2,81 3.16

I:
_Aev) 0,6 2.5 3=9 6.1 7.0 8°5 9°5 14_8 20.6 24.0

Jlog p.,

(gm/crn°)7.15 8°63 9.!5 9,69 9,87 10_13 10.28 10.84 11.28 11.53

Wheeler et al (8) used similar arguments to determine the compo-

sition in this range of density at zero temperature. Their results are sum-

marized in Figure 1. Line (1) marks the ordinary valley of beta stability.

The cross on this line is Fe56. \','hen EF = 0, the equilibrium point is

at Fe56, As EF is increased, the most s?_ble element
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moves along the line (3) and finally at A =122

and Z = 39_ it meets the llne (2), the neutron drip line, which re-

presents the place where the neutron binding energy falls to zero.

(2) is called the neutron drip llne because as EF_ and hence the

denslty_ is increased beyond the intersection of (2) and (3), heavy

nuclei are destroyed and neutrons drip off as we go along (2). (Note:

Wheeler did not include shell terms.)

co Results of this Research

In this research_ it was thought to be worthwhile to re-

investigate the equillbrlum configuration of a cold_ dense matter in

a more systematic way by the use of 7090 computer. Firsb the

quantities A, B_ and (B*/A) were calculated and listed as a function

of 2 and N in the ranges 11 _ Z.._ 100 and 1.5Z < N < 4Z° This was

repeated for EF = 0c 17_ 5_ 10_ 15_ 18_ 20t 23_ 25_ and 30 Mev. The

above values of N_ Z, and EF were selected so that our range of inter-

est in the problem of neutron stars would be well covered. For an

ionized gas of dense matter, the following conversion of EF to

density p is applicable to a first order approximation:

EF = (3_r2) 1/3 _ e(p No/'lJ) 1/3 (relativistic)or

(2-8)
EF = (3_r2) "_3"_/("l_2/2me ) (p No/H) 2/3 (nonrelativistic)

_7
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where NO is Avogadro's number and F =A/Z. A more accurate

treatment (Sectlon il-4) is made in the final calculation.

The maxlmlzation of (B*/A) wlth respect to A and Z was

made in the following manner. In the above table of (B*/A) vs. Z_ N, A,

and B, the maximum value of (B*/A) and the corresponding A were

first chosen for each Z and denoted by (B*/A) m and A m, respectively.

Nexb the quanHty (B*/A)m selected in thls manner was plotted vs.

A m in Figure 2o A particular value of Z is attached to each A m

through the first process. Then, the Z at the peak in the (B*/A) m vs.

A m curve (Figure 2) glves the atomlc number of the most stable element

and was called Z m, In this way the most stable element (A m, Zm) was

selected for each value of EF •

The result is summarized in Table 1 b, Table 2 and Figure 2.

It certainly shows the shell effects and pairing effects and takes account

of the indlviduai fluctuations of the mass correctly. As EF increases

we see a flow of elements from one closed neutron shell to another_

Up to EF = 18 Mev, the N =50 shell is the most stable° Beyond this

polntt the maximum point shiRs to the N = 82 shell. At EF =30 Mev,

the helght ef the elements near the N =126 shell and that at the N =82

shell are almost comparable, but the actual shif_ of the maximum

element from the peak at the 82 shell to that at the 126 shell did not

occur. The general trend of a steady increase o._A m and a steady
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TABLE lb

/vbst stable nuclei at different densities (different EF), and their
values (B*/A) and (Am/'Zm), for cold matter

EF 0..17 5 10 15
Mev)

log p ._
(gm/cm,_) 6.07 9.37 10.29 10o82

A m

Z m

56

26

84

, i

34,

82

32

78

: 28 I

18 120 ;23 125

,J ,, 4

120 l

! ,28 40 _'_ 38 36

N m

maximum
nucleus

(B*/A)

Mev/ptcle

3O

F 56
e

2.15

5O

S 84
e

_r

50 } 50 t 50 i 82 82
i _ ' t' t ,

%82N_78!Ni78izj22 s,,120
i

2,48 2.56J
i

r
8°797 6o631 4.650

I
2J8j 2_78

4-------

J

3.05 3.!6i 3.28
I

32182 ;82
i

K,._]18. Ge 114

3°56

1
2°7871 1o703! 1o027: 0.0601-0o565 -2.041

i I ; I
,



I TABLE 2

Some of the peak nuclei under equilibrium conditions at

different Fermi energies EF

5O

I

5

15

nucleus[ Z N

34Se84! 34

B/z85 35

Go 80 32

Ni66 28

5O
m

5O

5O

48

38

A

8_4 (Mev4_tcle)6,631

_ 6.621
6.614

O0 6_613
I

661 6°608

(Mev) nucleus

32Ge82

Zn80

Ga 31 31 50 i 81

10 As83

i

30 50! 80

33 501 83
I
i

J

As 83 33

Zn 72 30

28Ni 78 i 28

Cu79 _29

50

42

50

83 6.604 j

721 6.602 I

78 2.787 1 hOZ122

791 2.773 20 !Mo124

Zn80 30 , 50 80j

120 38

Rb I 19 37

Bll 7 35

Sel 16 34

y 121 39

A 113 33

2.770

2°738

Nb 123

y12]

IiGel14
t

82 1120

82 1119

82 117

82 116

-0.574

-0o576

-0,584

-0,586

116
_Se

30 iAs115

Ga113

(B*/A)
(Mev/ptcle)

4,6502

4.6446

4,6389

4,6163

I

I

40 821122 1.027

42 821124 1,020

41 82i123 1.018

39 3
t-----

32 82 114 j -2.04]

_-2,051
t

33 82 115 !-2,054
I

31 82 1131-2°059

Zn 112 30 I 82 112 -2,067

82 121 ! -0.599 !

80 113 -0o616 _S,_178 j 50 j126 178 -2.073
I

!" f I i
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decrease of zm ( = Zm/A m in our notation) is observed in Figure 3

of reference 11 (a). When the shell effect enters this change is

more nearly discrete. The sudden jump from one magic number to

another is typical in my result. This effect is reve_led in Salpeter's

final result also (Table la), though the numbers attached to the various

elements are somewhat different from mine. Salpeter estimated the

accuracy of his result to be within 20%. (11(b)) Within this limit, the

general agreement between Table la and Table lb is satisfactory.

Especially the agreement of tile vQlue p - (Am/Z m) between these

two results is excellent, in both, it changes smoothly from 2.15 at

Fe 56 to 3.16 at Sr120. The effective binding energy per nucleon

(B*/A) decreases smoothly as EF is increased and becomes negative

for EF > 23 Mev, indicating that all heavy elements are unstable

against disintegration to neutrons at these high densities.

The present method was used to determine the slability point as a

function of density, but it is inadequate to find i's temperature deDen-

denceo Also, the actual abundance curve (such as those shown in

Figures 11 through 16) cannot be obtained in this way. To get these,

we would have to depend on more eic_bora_e abundance calculations

including temperature effects (non-zero temperature treatment), and

the rest of this chapter is devoted to that subject'.
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11-4 STATISTICAL EQUILIBRIUM ABUNDANCES

For statistical equilibrium to be maintainedt the following

conditions must be satisfied:

i) Energy must be statistically distributed among states

of translation of each type of particle present.

ii) Statistical equilibrium requires that there be detailed

balancing between reactions involving gamma ray

emission and absorptlon_ so that _:l_rmodynamic

equilibrium will be maintained between matter and

radiation.

iii) There must be suitable chain reactions connecting any

pair of nuclei (A,Z) and (A',Z'), previded that these

nuclei occur _n appreciable abundance. As to the

chain reactionst we can assume that only neutron,

proton and c_particle reaction are required to establish

the chain between various nuclei.

iv) The beta process is important in maintaining the

equilibrium between protons and neutrons (including

bound nucleons as well as free ones). The importance

of a particular beta reaction depends not only on the

li._e_-ime but also on the abundance of the nuclei

involved.
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We will note that satisfaction of the above conditions

critically depends on the temperature with which we are deallng_

and actually this sets the lower limit to the temperature at a few

billion degrees.

Assuming that the above conditions are satisfiedt the follow-

ing equation of statistical equilibrium is derived in Appendix 1:

n(A,Z)= 3/2 Z
2_ 2 (_) n2A P exp (Q (A, Z)/kT)

where n(A_Z) =number density of the nucleus (A,Z)

n = " " " free neutrons
n

np " " " free protons

Q(A,Z) =binding energy (ground state) of the nucleus (A,Z)

_(A,Z) = partition function of the nucleus (A,Z)

M = atomic mass unit

k = Boltzman_s constant

h =fi 2_ = Plank's constant

T = _emperature

A = mass number

Z = proton number.

It is convenient to re-express this as

nnA n_ _"n(A,Z) =f(A,Z,T) { ( ) }.

(2-9)

(2-Io)
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The term which depends on temperature but is independent

of density is separated from the rest in the form f(A,Z,T). _ in

(2-9) was already calculated in Section 11-2 and that can be used

whenever experimental data is not available. _ (A,Z) is defined as

_(A,2_)- Z (2! ÷ I) exp (-E,I/kT)
I' Y

where Ty is the spin of the_ h level and Ey is the energy of the

,_,th level. Actual evaluaHon of _(A,_-) is done in detail in a later

section (ll-9b). At the present stage it is sufficient jusl- to note that

the dependence of the abundance n(AtZ ) on J,A,Z) is not large, and

in order to make the present discussion easier we tentatively assume

that g(A,Z)is known. (For" instance, if the excited sta_es are neglected

and the spin of the ground state is 1/2, _(A,2.) --2_)

Assuming that Q and _ (A,7_) are known, the free parameters

appearing in (2-9) are np, nn and T. If densities and temperatures

are given and if there is another relaiion which relates nn and n
P

to total density p, the abundance of any m.cleus _,A,?L) is determined

uniquely for any given density and temperature.

The hitherto conventional method {:or providing another con-

dition was to tre_t p_ n, and e- as the components oF the chemical

reaction n _ p + e and to apply the statistical equilibrium relation

to them. However, in the stellar interior where the neutrinos escape

(2-11)
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forever at a great rate as in our case, we cannot treat the above

beta process as the chemical reactlonl since the process is not

reverslble.

Under steady conditions, however, we can still say that the

total number of electron emissions per unit timo is equal to the

total number of the inverse processes (negatron captures plus positron

emlssions) per unit time, and this furnishes us with the requlred con-

dition. Denotlng the electron emisslon by a subscript mlnus, the

inverse processes by a subscript plus and expressing the rate per par-.

tlcle by P(A,Z), and the number denslty by n(A,Z), we can express

the above steady sta'_e conditlon imposed on the beta processes as

)" P.. (A i, ZI)n(Ai, Z i) = _ P+(A k, Zk)n(Ak, Zk )
i k

The summation is taken over all the contributors to the beta reactions

on each side.

in th:,s research, the elec'_ron [:erml energy EF was chosen as

one of the free parameters _nstead o{ the dens;ty p. Therefc, re, the

following procedure w=s adopted,

electron number density ne

EF = (3 _ 2) 2/3 -h 2
2me

Given EF the corresponding

was first calculated through the relations

ne 2/3 (non-rQ!atlvistic)

or EF =(3T;2) 1/3 h c ne 1/3 (retatlvisti c)

(2-12)

(2-13)



where "fi"= Plankts constant/2_t, c =velocity of light, and

m = electron mass°
e

The conservation of charge requires that this ne should be equal

to the sum of all the positive ion number densities times Z:

n° ZjoC ,
J

The summation is taken over all the

A >1 1 and

requires that

F

where

Z_l.

ions j of interest w.ffh

On the other hand, the conservation of mass

= Y A k n(Ak, Zk)/t_
k

N is Avogadro's number, and the summation is taken over all
a

the nucJei : k of interest with A) 1 and Z >/ 0.

For agiven EF we know ne through (2-13), therefore ne

in (2-14) can be assurr_d to be known for any given EF. Thus we

have three equations (2-10), (2-12)and (2'14) (namely, the statistical

equilibrium abundance formula, the condition imposed on the beta

processes under steady state, and the conservation of charge) far the

three independent variables nn, np, and T. In princ.:ple, solving the

above three equations simultaneously solves our problem. Once the

abundances n(A, Z) are kno_vn, the conservation of mass as expressed

by the relation (2-15) will give us the corresponding density. This
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procedurewasfollowed in this research.

One thing we have to note is that in using the beta process

described above,(2-12), we must first know roughly which nuclei

would contribute appreciably to the beta processes. The latter can

be found if the rough abundance distribution is known beforehand.

For that purpose a first approximate calculation of n(A,;_), without

the use of the reaction (2-12), is necessary, and it was made as follows.

!i-5 THE ADJUSTMENT OF nn AND np t AND THE

A_UNDANCE CALCULATIONS,VIITHOUT BETA P_OCESSES

For ordinary terrestrial conditions where EF_ 0, elements are

beta-stable if both their electron and i_ositron energies are negative.

However, in such dense matter as we are dealing wEth where EF _, 5

May, the valley of beta stability is shifted toward the neutron-rich

side. Thus, the np and nn were adjusted so that the maximum

abundance wouZd occur along the shifted valley of beta stability for

each given Fermi energy° Combining (2-10), (2-13) and (2-14), we

can relate the Fermi energy to the free neutron number densffy nn

and free proton number density n in the form
P

EF = EF(n n,nP).

The first input values of nn and np for a g_ven EF
were e:_'imated

by an approximate hand calculations based on the assumption that the
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nuclol involved were those giving the maximum at the peak for

each of the selected values of EF in Section 11-3 and in the Figure 2.

A program was constructed sucl_ that the computer adjusts nn and

n until the calculated Fermi energy through (2-16) agrees with the
P

given Fermi energy wlth_n 0.1%. in this method_ we adjust the combi-

np )Z
naHon _(nn)A(_nn j_, butnot nn and

quite posslble_ therefore, that the n(A_2.)ls

n separately. It is
P

calculated in thls way

do not give the maximum abundance in the valley of the beta stability.

In that case_ the input trial values of np and nn were changed

keeping the product _'nn A (np)Z_ constant, and the calcu-while

n n

lations were repeated until the best fit to the center of the valley was

obtained. This was done for EF = 0.17_ 5r 101 15_ 20t 23 and 25 Mev_

and for T at 5 billion degrees.

Logarithms of nn and n/n n thus obtained are plotted

against density in Figures 9 and 10 and shown as dotted curves. The

number of free neutrons increases with increasing density while the

ratio of the number of free protons to free neutrons decreases.

Values of nn and n/n n are then subsHtuted into equation

(2-9) to gel' the abundance n(A,Z) for all the nuclei ' (A,Z) of

interest for each EF. About 200 nuclei were selected for each EF_

which covered the whole of the peak regions in Figure 2 for cold

matter.
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The actual abundance curves thus obtained are not shown

because they are similar to the final abundance curves obtained in

a later section (ll-gb), including beta reactions. However, the

general behavior of how eler, lents change with an increase of EF

is shown in Figure 3; also the first six nuclei, in the order of

highest abundance are listed, together with the abundances, in

Table 3, in the rows marked 11-5 for each EF. It is interesting

to compare the peak nuclei listed in the first row with those ob-

tained in Section 11-3 listed in Table lb. The agreemen_ is perfect

• 66
except at 5 Mev, where the peak nucleus is 28N!38 in the

84

present result while it is 34Se50 in Section 11-3. This discrepancy

is reasonable if we look at Figure 2. The peaks near Ni 66 and

Se84 are comparable in their heights in Figure 2. The former

corresponds to the Z = 28 closed shell and the ia*iter to the N = 50

shell. The general behavior of the stability point as a function of

temperature is, as will be fully demonstrated later, a flov_ of elements

clown toward the lighter element side with an increase in temperature,

if densffy is kept constant. The present result was obtained for

T - 5 x 109 OK but that in Section 11-3 is for zero-temperature. As

the temperature is raised from :ere to 5 billion degrees the stability

point apparently is shifted from Z = 34 to 28° The shifting of the

peak position with the increase in temperature is more pronounced
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when two adiacent peaks for different magic numbers are comparable.

For instance, at EF =20 Mev, the peak nucleus is Zr 122 at zero

temperature_ but as Figure 2 indicates the peaks near Zr and NI are

comparable in their heights and the more accurate calculation in

Section 11-9b reveals that the peak nucleus at 5 billion degrees (and

20 Mev) is Ni 80 and not Zr 122, though the present calculation gives

Zr 122 as the peak nuc!eus even at 5 billion degrees (Table 3).

Similar calculations were tried at EF

here_ this method proved to be inapplicable.

= 25 and 30 Mev, but

In this region_ where

neutrons are expected to dominate, it would probably be necessary

to include the conditions imposed by beta reactions, which was

omitted in the present method_ but which is included in a more

accurate method presented in Section 11-gb_

Figure 3 demonstrates how the abundance curve changes in

shape and how the peak position shifts in the Log n(A,Z)-A plane,

with the increase o.r" Fermi energy (that is, with the increase of density).

The peak is near A =56 and rather sharp when EF =0.17 Mev; it is

very broad ra_ging from A ,v48 to 88 when EF -5 Mev, but it is

again well concentr=ted in a small range in A around 80 when

EF = 10 and 15 Mevo This corresponds to the N = 50 closed shell.

With further increase _n F F, the abundance of nuc!el at the N = 82

shell increases very quickly. At EF - 20 Mev, the peak at the N = 50
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shell and that at the N = 82 shell are comparable. When EF =23

Mev, the former (at the N -= 50 shell) has already diminished to

almost nothing and the latter (at the N -- 82 shell) predominates,

with S120 as the maximum nucleus.

In the simple approach in this section, other noticeable

temperature effects were not prevalent, but the abundance curves

plotted in this section were very useful when beta process contri-

butors were selected in Section 11-8. Further discussion will be

deferred to Section 1!-9b, where the final abundance calculations

were performed.

11-6 BETA REACTION RATES

The importance of the role played by beta processes in

equilibrium abundances has already been emphaslzed, in dense matter

such as expected near the sur{:ace of a neutron star a great deal of

modification to terrestrial processes is necessary. The present section

is devoted to that consideration. Firsl-, a brief review of the terrestrial

processes is presented and then the modified formulae for the stellar

rates will be derived.

ao Terrestrial Beta Processes

In an electron emission, a neutron in a nucleus is converted

to a proton, and an electron and an antineutrlno are emitted. The total
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energy changeof the atom, EatI or the energy available through

this process, is shared by the electron and the neutrino. In a

positron emission, a proton is converted to a neutron and a positron

and a neutrino are emitted, The total energy change of the atom in

this case is Eat + 2mc 2 where Eat now is the highest kinetic

energy of the positron and mc 2 is the rest energy of the electron.

The conversion of a proton in a nucleus to a neutron can take place

by the capture of a bound electron of the atom instead of positron

emlsslon_ especlally when the energy change is less than 2mc 2.

(The most important of such processes is K capture where the electron

in the innermost sheib the K shelb is captured°) These three are called

beta reactions in general.

For the beta emission processes, the total energy is shared by

the beta particle and the neutrlno_ and thus the energy of the beta

pertlcle is distributed continuously from the smallest possible value

to the maximum energy, which is the _otal energy available for that

process (neglecHng neutrino mess), in these processes the beta par-

ticles and the neutrinos have to be treated relativlstlcally. It is con-

venient to express energy by V/-(E/mc 2) +1 so that the energy will

be distributed from 1 to W o =(Ea/mc 2) + 1.

The transition probability depends on the phase space of the

final state, the square of the transition matrix element i M 12 and a
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term which takes into account the Coulomb forces exerted by the

surrounding electron clouds on the emitted beta parllcler denoted by F.

The phase space of the final state is just the total number of possible

neutrino states and of beta particle states and so is proportional to

Pe2 dPe Pv2 dPv, where P is momentum and the subscripts e and v

denote electron and neutrino respectively. Noting that PVC = Ep = Eo- E s

Pe =/W2 - 1, W =E/mc 2 +1 (whereE is _-particle energy), and that
mc

the final state phase space in the interval W to W + dW is proportional to

v/(wo - w)2 dW; (2-17)

the probability P(W) of emission of a beta particle with energy W is

where

2 2 - -- ---1
P(W) dW=g I M I F(Z,\'/)W(.V.i2-I)_(W-Wo)2dW

g depends only on the strength of the interaction.

(2-18)

The total trcnsltlon rate is obtained by integrating (2-18), and

can be expressed in the {orm

X±_ _/n 2 2
t + = g

where the Fermi function

2 .I-
IMi f- (Z,W o) (2-19)

f was defined to be

+ 4Z,W) (V/2-1)½(Wo-W}2W-4V/ (2-20)f- (Z,Wo)=/

This applies to both positron emission (+sign) and negatron emission

( - sign). The difference in the expression for the two cases arises because

the positron is accelerated through the Coulomb field of the surrounding



electrons while the electron is decelerated.

a different expression for F; thus we denote

and that for an electron by F',

Thls difference leads to

F for a positron by F+

1( capture is governed by the same nuclear matrix elements as

beta decay; however, the transition probability for it depends on energy

in a different way, due to the different phase volume and the electron

eigenfunction. However, using an argument similar to that for the beta

decays, we arrive at the same expression (2-19), provided the proper

form is assigned to the Fermi function f. We denote this by fK "

The function f generally depends only on the atomic number

7_ and the characteristic beta energy V.p (which is V/o in the beta

emission processes and W K, the atomic binding energy of the captured

electron, in the capture process). This quantity combined with the

hai_-Iif% (ft), cal led the comparative half-life, is extremely important.

From the above equations, it is easy to show that ft - ._n 2
g21Mj _ and

(.Cn2)f
X =

(ft)

That is, (ft) is a measure of the inverse square of the matrix element and

the strength of the interaction. If the wave functions e'_pressing the

initial and final states are similar, the overlap is large and the matrix

element is large, resulting in a small (ft) value. Since we use normalized

wave functions, if the initial and final states are identical, the matrix
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element is 1 in an allowed transition. Since g is small, ff values are

expected to be large. Thus, it is usual to use log ft.

We noted that the beta processes have to be treated relativistl-

cally. There are five types of expressions which are relatlvistlcally

invarlant, scalar, polar vector, tensor, axial vector and pseudoscalar

_nteractlons. These interactions give rise to different selection rules.

The details which lead us to the selection rules are not shown here but

the results are listed below:

Selection Rules

Ai lowed

First forbidden

Second forbidden

I Par!ty, Change i Fermi
no I 0

= J , , ,

t 0,1
t yes F0 --_ 0

f

no I 1,2
I ,, l

Gamow-Tel ier

O, 1,2

_log ft

3-5

6-8

9-11

I

This llst proves useful later when the beta-process nuclei" are selected

for the abundance calculations. The Fermi selection rule corresponds to

a scalar interaction where no spin fllp occurs, while the Gamow-Teller

rule includes the tensor interactions, where a spin flip can occur°

The distlncHon between the allowed and forbidden transitions

will now be considered. The matrix element consists of the initial and

the final wave functions which involve both the nuclear term and the



electron-neutrino term. The electron-neutrino part can be approxi-

mated by plane waves. It turns out that the typical term, exp (-! P._),

of a plane wave for the electron-neutrlno wave function is small com-

pared with 1 so that this can be expanded in power series. In case the

final and the initial nuclear states are not orthogonal and non-vanlshing

it is enough to include only the first term of the above expansion, which

is 1. This case is called the allowed transition. If the matrix element in

this case vanishes and if the inclusion of the second term of the ex-

pansion g_ves rise to a non-vanlshing matrix elemenb the interaction is

called first forbidden, and so on. The order of the forbidden transition

is the number of the first term in this power series, starting with zero,

which gives a non-vanishing matrix element.

From the above argument, the conclusion is that for any given

degree of transition (allowed_ first forbidden, etc.,) our problem boils

down to the calculation of the Fermi function f, because once we know

f the equation (2-21) gives us the transition rate _. The analytic forms

of f for beta emissions were obtained by Feanberg and Trigg, (38) and

• (39)
that for K capture by Major and B,edenharn. Their results are

quoted below° The Fermi function for positron emission f+ and thGt

for negatron emission f- is given by {'+ = _R_ fo + where _R

"Is plotted as a function of W o in reference 33, and

7O
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with

+ t

f--- U/]el+o U_" "_2. 4-

u;': + u.,
Uz: - ( U, )2 c__4 x

1
e×p (-_z"rr_z)) __d.,13__7,

U 3 - O z ( ._LqT4 7_. - _ -/-" ..9_,Or), (2-22a)

(2-22b)

where log 10g K2 = (7.9776-10) + 0003256 Z-] 0 (0"48775-0°0380236Z)

where Wo is the maximum energ 7 of the beta spectrum in mc 2 units in-

cluding rest mass and W K is the binding energy of k shell electrons in

2
mc units. The Fermi Function for free electron capture in the absence of

degeneracy fc is given by(40)

fc : 6x 10-3_9 fK/Z 2 (2-22c)

B. Beta Transition Rates in a Dense Stellar Interior

The temperature range we are interested in is above a billion

degrees, At such a high temperature most of the atomic electrons in a

stellar interior are ionized, in our density range of 106gm/cm 3 < _ <

1012gm/cm3, those electrons can be regarded as constituting a degenerate



Fermi gas. Therefore, we are now dealing with the beta stability of

various kinds of nuclei in the Fermi sea of an electron gas°

Under such a circumstance the phase space available for electrons

is reduced, which decreases tile electron emission rate considerably

because of the Pauli exclusion principle. The positron emission is hardly

affected_ except through a negligibly small electron screening effect.

Due to the lack of the presence of bound electrons, the capture of orbital

electrons is negligible, too. Therefore, the major process inverse to the

electron emission is now not positron emission nor bound electron capture

but the capture of continuu_lectrons. Therefore, our concentration wlil
/

be focused on the derivation of thQ transition rates of the electron

emission and continu_lectron capture in the presence of electron
/

degeneracy.
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(1) Capture rates of continuu_lectrons -

In Section 11-6a we saw that all the rates (electron emission,

positron emission and electron capture) end up with the expression (2-21),

provided a suitable meaning is attached to the Fermi Function f. The

essential difference imposed by degeneracy is due to the effect of the

number density of the surrounding electrons on the rate of capture, which

exist because of the fact that the rate of this reaction is proportional to

the probabillty that a continuu_.electron is present at the nucleus where



it is captured, which in turn is proportional to electron density.

This effect is correctly taken care of by an additional factor

_.1 +exp _(W-p)/"C_._ -i known as "the Fermi distribution function,

in the expression for the transition probability. Then, following the

same procedure as in Section 11-6a, we get

x-j g2I M12F(Z,W)(w2-1) W wdV40 ÷exp
over all energy

where "c" _ kT/mc 2 p =chemical potentlal/mc 2 and V,//= neutrino

energy/,fl_C, _. Thus, if we define the Fermi function for continuum

electron capture by

(W2-1) ½ W\'4r2F(Z,V,_ _1 ÷exp/" (W-H)/_'_--ldw, (2-23)

we get the same expression for the rate as (2-21). That is,
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X = 2n 2/t : (._n2)fc/(ft) (2-24)

This is a powerful expression, since ft
2

depends on I M I only,

which is fixed for a given set of initial and final states, independent of

the mode of transition. As the Fermi energy EF of the surrounding

electrons increases, the terrestrially sfable elements and even ihe terres-

trial electron emitter will become unstable against contlnu'_' lectron

capture when EF exceeds the electron decay energy._ Thus the element

which decays by electron emission terres?rlallyn as well as those which



decay by positronemissionand boundelectron capture terrestrially,

can now decay by captureof contlnuu,j_lectrons. However,whatever

the terrestrial origin may be, the nuclear species we are dealing wlth

before and after the transition does not change. Therefore, by having

information on the properties of the nuclei before and after the corres-

ponding terrestrial trcnsition (the values of W_, Z, spln change, and

parity change), which enables us to estimate the ft value, we can

calculate the stellar rate of transition by equations (2-23) and (2-24).

in the capture process of continuu_lblectrons ,

ec'+ (A,Z) --_ (A,Z - 1) +

the neutrino energy \V_ =_h/o + W, and fc reduces to

CO 1 ,_

fc = J_vto (W2"l)_W(_/o ÷W)"F(I ÷exp [(W-IO/"C}_-Idv!.

A more rigorous derivation may be found in reference 41.
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(2-25)

(2-23')

(i[) Electron emission rate in a dense plasma -

The effect of the excluslon principle in a dense plasma on the

" decay probability occurs due to the fact that the number of fina!

states per unit energy interval P(W) is reduced because of the electron

phase space already occupied, which is a function of tile Fermi-D_rac

distribution function _l ÷ e::p _ (VI-p)/%'_ i -1. The number of electron

momentum states between Pe and Pe + dPe ah'eady occupied is
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which has to be subtracted from the whole electron momentum space.

Therefore, the modified expression for P(W) dW is now I

P(w) aw'= _#lNl_ FCz, w)w (w_ l)_Cw-Wo) _

1+ e_ E (W--- M)/'E_ _
W

( 2- 26)

and substituting this into the expression for the total transition rate, we

2_o  o,o .=

wlth

(2-27b)

or
• 0 Z&

where for convenience the following notation was used:

(2-27c)

Wo

fo-_IF ( W0-W)_wVrw__I W _VV=terrestrial Ferml-function
"l

- _ (2-28)

(2-29)

p = chemlcal potential/mc 2

The above cpplies to electron omission. We note that when fo _A no

transition occurs. A more rigorous derivation may be found in reference 41.
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(iii) Modified Fermi function __ for.the degeneracy limit -

W° in (2-23 j) is the energy available through the transition of

the ¢lu_:le_s (A,Z) to (A,Z-1)o Therefore if Wo_- - 1,

this process is exoerglc, that is, even with no electron energy

it will take place. Such processes correspond to the elements which ex-

hibit terrestrial positron emission or bound electron capture. In this

case, the lower limit of integration in (2-23) is (. If V/o _- 1, the

capture process is endoerglc, that is, the electron energy must be greater

than Wo for capture to take place and the lower limit of integration is

In the degenerate llmib the exponential term in the Fermi-Dirac

distribution function is muchless than 1 and _1 +exp _(\'/- H)/_)_ --_ 1.

Therefore, (2-237 ) reduces to the integration

_WF W _- 1 (VI + Wo )2 FdW
fc_ = (W ° endoergic

or 1. 1 e'_oergic

(whore V..F = EF,/mc 2 + 1)

where now the Cou!omb factor F can be sh_pllfied by approximation

F=2W_.Z if 2"/T_2: "> 1

given in reference 38.
F=I if 2_c/-2: < 1

For the electron emission, if we set(C1 +exp_CVI-p)/"/-)_ = 1,

then fo = A, which corresponds to no transition. Therefore, the second

term in (2-26) was expanded and only terms up to the second term were
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I retained. Then, exp _'(W-F/T').'/becomes the leading term. The same

approximation for the Coulomb factor was applied to the electron

emission formula. The results are summarized below:

(A) 2_L7_> 1 (Z>23)

........ (1) capture of free e _

5 I _-

-_ -3 IWo( (wF-lwol )_

(2-30)

II

, , m,,, i,, , i , ,i i, ill i re, ill

(2) e" emission

A
f; =f o( 1 " _"_s") with

_/_.0 : _)#Wppv_aYDl(_VojpWO) whereD1wasdefinedby

r_- ,

(B) 2TFg. Z < 1 (Z < 23)

(1) e" capture

"_c- P#+ P#(I"I'W°;)-I- _---"°_ 2 _F_b'?- _FWF

2_

Wo(-t

(2-32)

)
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(2) e'emlsslon

o,_ = xS/s-+

where ._ =(VIF2 1){,4,_'-' 1/137,
'nlC

fg = terrestrial e" emission Fermi function°

(2-33)

c. Discussion of the Results

The modified Fermi functions fc_ for continutm)6apture and

f; for the electron emission were calculated by the use of formulae

derived above, for

!EF(Mev) _' ' i : ' 23 1! '• I _
1 261 28 I 32 12a 12a i 4O : 38 j
' _ ! i J ! l i

The corresponding atomic number Z was selected from the result

of Section !1-5, namely, the element of maximum abundance as found

there was used_ Two values Z = 28 and 40 were used for EF =20 Mev

because there were two peaks of comparable height at this Fermi energy.

The abundance distribution for EF _ 25 Mev could not be calculated

by the simple meihod of Section 11-5, but the general behavior indicated

that already at 25 Mev the free neutrons would dominate. Therefore,
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we expect the elements contributing to beta processes to be some of

the lightest neutron rich elements= H_ 7 is already unstable against

neutron emission and so Helium of maximum neutron number is He6o

H 4 is unstable against neutron emission and thus the most probable

contributor to the beta process from hydrogen isotopes seems to be H 3.

We expect also that some heavy elements near the peak in the zero

temperature abundance distribution which are stable against neutron

emission will be present. Such elements were already obtained in

Section il-3_ namely Z = 36 for 25 Mev and Z =32 for 30 Mev.

Therefore_ for those highest two values of EF, the following Z_s were

selected=

I F-F(Mev)! _ 25L

i
2. I
1 10, 1, 2, a6

The Fermi functions f for all cases were calculated as a function

of W o for the selected families of values of Z and EF as shown above.

Besides these, f for zero Fermi energy was calculated by the use of

equations presented in (2-22al through (2-22c), In evaluating fo ap-

pearing in the expression for stellar electron em|sslon rate, the f values

in (2-22a) were used, In the derivation of the capture ra'_e in (2-30)

and (2-32)_ ._he approximaHon was made separately for the cases

wo _- I andWo <- I.
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In Figure 41 the result for EF -=20 Mev and Z = 28 is shown_

where f was plotted as a functlon of absolute value of V/o = (Eo/mC 2) + 1

The portions of the curve denoted by (1) and (3) were obtained by the

first of the equations (2-30)

which is exactly valid for e-_oergic capture but breaks down for endoergic

capture with the threshold energy appreciably greater than the rest mass.

The portion marked (2) was obtalned _:rom the second of the equations

(2-30) Both approxi-

mations devlate appreciably in the intermedlate region 25_'j W o I <. 38.

Therefore, in this reglon the two curves were smoothly interpolated by

hand° The graph shows that when the threshold energy exceeds the Fermi

energy_ the element in question disintegrates by negatron emission_ while

when Wo < W F • electron capture fakes pJace. The regions (2) and

(1) correspond to the case in which the element under the terrestrial con-

dition (zero electron Fermi energy) disintegrates by electron emission but

becomes unstable against continucr_lectron capture in the electron gas

of Fermi energy 20 Mevo The region marked (3) corresponds to the

electron capture whose terrestrlai counter-part disintegrates either by positron

emission or by bound electron capture•

The over-all effect of density on electron capture is shown in

Figure 5 and tha_ on electron emission in Figure 6_ in each of which the

correspondlng modified Fermi function f was plotted agalnst the absolute
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value of the threshold energy of the beta transition of the corresponding

mode (including rest mass) in units of mc2 for a family of EF values.

For EF = 20, the effect of Z on the Fermi function is also shown. Clearly,

the e" emission rate is greatly decreased with the increase of EF, and

hence of density, while the e" capture rate increases rapidly with rise

in EF. For the same EF, the rate is shown to be somewhat Jessfor smaller

values of 22.

II-7 PHOTC_BETA RATES
. J

The temperatures being considered here are high enough for the

contribution of the nuclear excited states to the beta process to be

important. Since most of the excitations are due to photons, such beta

,,(_)
reactions involving the excited levels are called "photo-beta processes.

The over-alZ rate including the excited states can be expressed as

where

(2-34)

is the fractional popu?ation of the excited state i. The notation used is

_('-F) = _ (_" _+ "/ ) exp. (-E_/kT) = Partition function
J

(2-35a)
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Ji = the spin of the energy state

Ei = the energy of the state i

T --: temperature

To get the total number of beta processes per unit time re-

qulred for the abundance calculation as described in Section 11-4,

the above expression has to be multiplied by the abundance of the

nucleus" in question, and summed over all the nuclei, which will

contHkute appreciably to the total rater as seen in the equation (2-12).

If the ground state is already undergoing a fast transition_ the contri-

burton of the excited states will enter only as ape, rturbatlon_ but if

some decay from the excited states is ailowed_ while decay from the

ground state' is forbidden in a Mgher degree, the rate of transition will

be greatly accelerated by the inclusion of the excited states for a

sufficiently high temperature.

11-8 SELECTION CF BETA-REACTION NUCLEI

Jn the final abundance calculation we must include the con-

dition imposed on beta processes (2-12)

where the P+'s are evaluated through equations (2-34) and (2-35).

The summation in each side of (2-12)' is over all tile nuclei contributing



appreciably to electron emission and its inverse process. Each side

of the equation depends on the abundance of each nucleus; thus_ the

first criterion for determining the contributor is that its abundance

n(AtZ) is large enough. This is known from the work in Section 11-3

and 11-5. In the first sorting process, the following method was

adopted, in the abundance curves obtained in !I-5 (Figure 3) if the

peak was broad and flat, as in the EF =5 Mev case, the nuclei with

abundance n(Ai, Zi)_ 10-4 n(Am, Zm) were included, while if it

was as sharp as in the case of EF = 10 and 15 Mev_ an abundance even

as low as n(Ai, Zi) _' l0 "6 n(Am_Zm) was included where n(Am, Zm)

is the maximum abundance at the peak. The nuclei with lower

abundances than the above Ximlts were not included at all, except in

unusual cases.

The nuclei selected in this manner are further restricted by

selection ru!es discussed in Section 11-6, through the ft value in the

denominator in (2-34). Rough values of ft can be determined through

the assignment of spin and parity of a parent and the daughter nucleus

for each beta reaction concerned. It is hopeless to do so individually

for all the excited states and for that purpose a statistical approach

was used as explained later, but for the ground states and the first

few excited states such assignment is possible by the help of (i) the

shell model, and (ii) empirical data such as given in reference 42.
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(i) The shell model -

Here I am not going to discuss the shell model itself (since

there are a number of excellent review articles_ like reference 43144_

etc., but merely to list some of the rules deduced from the shell model

which were used in my selection of the ouclei.

(a) The ground states of all nuclei with an even number of protons Z

and neutrons N have spin J = 0 and even parity_ 0 +.

(b) In a nucleus, if Z is odd and N is even_ the ground state properties

are determined by the protons alone and similarly for the opposite

case, i.e., for N odd and 2_ even, the neutrons determine the

properties of the nucleus.

(c) In a nucleus of odd A_ the nucleons of odd number couple their

spins in such a way that the total spin is that of the last unpaired one.

The above rules p!us the level diagram of tile shell model

such as Figure IV 3 of reference 43 are sufficient for determining

most of the sp!n-pc_rity values of the ground stotes and the Icwest ex-

cited states of odd A nuclei. For N or Z higher than 50 the exact

configuration p:'edicted by the shell model and verified by experiment

d|ffers for N odd nuclei and Z odd nuclei but all such cases are

covered in the Table VI-1 in reference 43, which I used for the

selection of most of .'he odd A nuclei.
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For even A nuclei, the following rules were employed:

(d) For even-even nuclei, the ground states have J = 0+ with almost

no exceptions.

(e) For the first excited states of even-even nuclel one-third of the

cases have J = 2+ for another third in lighter nuclei, the assignment

is J=4 +.

(f) The states of even spin,

odd parity, for even-even nuclei.

followed is 0+, 2+ 4+_ 6+

(g) For odd-odd nuclei, Nordhelm's weak rule states, if bo,=h the odd

proton and the odd neutron are in levels in which the intrinsic spin s

and the orbital angular momentum _ are parallel, that is, if

in generab have even parity and of odd spin,

The level order most generally

is in a level where £ and

is in a level with parallel

s are and'i-parallel, while tile other kind

£ and s, that is if j n =£n + ½ and

jp= P.p-½, or jn=_n-½ and jp=_p+ ½, the total angular

momentum J = i Jn "Jp i"

(h) For odd-odd nuclei, one proton of .j and one neutron-hole of j

in the same level couple to give a total angular momentum J =2j - 1,

that is 1 unit less than the maximum addition.

88

Jn = _n +½ and jp = #p + _-, or both are anti-parallel, j n = P'n- _

and jp :_p - _, Jn and _jp tend to add, although not to the highest

possible value. Nordheim's strong rule states: if one kind of nucleon
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These rules in general are more appllcabl e for heavier elements

because of the dominance of j-j coupling, and from our previous results,

the elements we are most interested in for EF _ 23 Mev are heavier than

iron. There are other regularities discussed in references 43 and 44 and

all were used to the fullest extent.

In this way, for all the nuc!ei sorted by the first procedure

and their corresponding daughter nuclei in both electron emission and

its inverse process, that is, for (A,2.), (A,Z + 1) and (A, Z-l), spln and

parity were assigned. Whenever empirical data were available (up to

some neutron-rich r_uclo[ at 5 Mev), the empirical results were used.

If the spin and parity change between the parent and the daughter corres-

ponds to a transition forbidden by a degree higher than the third

(log ft > 20), such a transition was discarded without excepHon. After

studying a number of empirical data, the selection rules discussed roughly

in Section 11-6 were further subdivldod into the fol!owing empirical criteria:

oF transition

 ange

JComment

[ 1st ForbiddenAI lowed

2

yes

8._-5

2nd 3rd 4th

21 3 3 4 4,5

no no ,/es yes no

1oi12 20 °
average 17

p, d, f, g, h correspond to orbital angular momentum £ = 1, 2, 3, 4, 5.

Generally, an nth forbidden transition has L J =n, n + 1 and &-rr= (-1)n_



The third forbidden transltion was not discarded only when the

abundance of the nuclei involved was unusually high and when the

spin assignment was not too accurate because of Nordhelm_s weak rule

on odd-odd nuclei. For instancet in the trans|tlon (80, 31) to (80_30)

for EF - 15 Mev_ the shell model predicts spin-parlty assignment of p 3/2

for odd Z of 3! and g9/2 for odd N of 49, and according to Nordhelm's

weak rule the maximum spin of the parent is 6 and parity is - . The

ground state of the daughter is 0+, and the transition to the ground

state was discarded. However, the first excited state of the daughter

can be 2 +, and the parent spin could be a value less than 6, and in

that case this transition to the first e::clted state can very likely be a

2nd or 3rd forbidden transition. In such a case, the third trans|tion was

not necessarily discarded, especially if the akundance was large. When-

ever there was an ambiguffy in the assignment (due to lack of infor-

mation on exci._ed states, uncertainty due to Nordhelm_s weak rule for

odd-odd nucleb etc.), the hlghost possible va!ue was assicned to log ff

so that the amblguous nucleus will not overrule the nuclei whose as-

signments are clearer (like most of the ground stal'es o_ odd A nuclei).

For the nuclei which survived the _wo sorting pi'ocesses just des-

crlbed, log ft wa_ p.edlc':ed through the spin-parity cssignment for the

parent and the daughter nucleb beta decay energy was obtained from

the table made in Section !1-2, and from that, log f was calculated using

9O



the equationsin Section ll-6t and P+ was calculated by equatlens

(2-34) and (2-35); thent these values together with the logarithms of

product P+n(A,Z) were tabulated. The last entry, P+ n(AtZ) is a

measure of the importance of the element (At Z). Thereforet all the

nuclei whose P+n(A_Z) turned out to be less than 10 -U times the

maximum were discarded, in this way about 15 to 20 nuclei for the

beta process and about the same number for the inverse process were

left as the final candidates. This was repeated for each value of

Fermi energy EF . The result for EF =10 Mev is shown in Tables

4a and 4b.

The comparison of i'he assignments made through the shell

model with the experimental data shows almost perfect agreement for

ground states of odd A nuclei. In the assignment of the lowest few

excited s"ates of al! nuclei and the ground states of even A nuclei

(especially of odd-odd nuclei)_ where the uncertain_y of prediction

through the shell model is expected to be large, much effort was con-

centrated on the deducHon from empirical data so that the final assign-

ment of these values (some of which are listed in Tab!es 4a and 4b)

would not be too far from reality.

For instance, let us focus our attention on the element (79t 29)

in Table 4ao p3/2- for the ground state of the parent is clear from the

shell model.

93.

The spin and parity of the daughter (79t30) are determined



i

92

TABLE 4a

p" decay nuclei at EF =10 iv'tev. Notations: (i)_ denotes the ith excited

state, (ii) "2" means the assignment is ambiguous due to Nordheim's weak

rule, etc., (iii) "1st" means the first forbidden process, "a" means the allowed

transition, etc., (iv) the syr,lboi such as "2"" in the 5th column means the

transition involves spln change of 2 and parity change, while the symbol such

as "1 +'' means spin change of 1 and no parity change, etco, (v) EB is the beta

transition energy in Ivtev, (vi) P_. n(A,Z) in the !ast column gi,2es the measure
of the importance of the element (A,Z) as the contributor to beta process.

Max

spin _ Parity
of for-

biddenness

2" 1st

log ft

8°5

1+a 6

+
1 a 6

1- 1st 6°5

I

2",, 1st 9

P3/2- :!d5/2 + 1- 1st 6.5

d5/24_ P3,/2- 1- 1st 6.5

i

P3/2- d5/2 +
n

1 1st

8°5

6.5

8.5

E8 log

10o951 3._

i 2-3-

_ 2.8

12_90 4°9

__&92

__96 &6

i lo._;-
10.15 1.7

I I_5 4 I

log n(A, Z)

27.8

27.1

,n(A, Z.)P
In2

21.5

21.43

28.8 22.0

28.8 24.7

27.8 2&6

28°06 26.46

28°45 23.75

27°35 26.17

27.52 24°62

28°3 20.0

28°38 23.58

21.7

d5/2 + _ I" 1st

d5/2+ I P3/2- ! 1" 1sti

26°7

6.5 j 12.10

6°5 t 10o52
1 2,9 I

25°9

25.2

23.84

21 o6
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e" capture nuclei at

TABLE 4b

EF = 10 Mev, with the same notation as that
introduced in Table 4a.

l_rent

,_, jZ

75 80

77 31

77 31

[

79I 31
t

i
_80 31
!,, i

79' 32

81 ! 32

' !

i 81 33
i., i

8ai 33
t'

84 I 33

83 34

85 35

L

87 35

88 35

Spin and Parity

assignment
Parent Daughter

, . ,,

P3/2-

P3/2" (]/2-)* 2

P3/2" (1/2-) .1

6"or5-.0(21)*1
"1

g9/2 + (9/2-_ ?

g9/2 + P3/2"

degree
of for-

biddenness

1-? ]st

J

]+a

l+a

1st

m

2 1st

O+ a

I
I

i 3- 3rd

P3/2- (1/2-)'1 i ] +j a

P3/2" d5/2 + I 1- 1st
I

4 _or2- (24)'1

 9/2+ ]+o

P3/2- g5/2 +

d5/2 +

1- 1st

P3/2- 1- 1st

4" or 3? (2_ .1 2- 1st

!

log ft I EC

l (,_,_ev}
7.5 9.7

8.5 8.47

6 8.67

16 9.43

8.5 i I0o07

8 8°4

15 9.09

[

t6 7
1

6,5 9.44

9 9.726
I

!7 7

7 6,;74

6,5 8o28

8.5 8,8

log f

1.5

3,38

!
3.25

-3

0

t

3.4 [

2.8

3°9
t

2°2

2.8

3.9

4o041

3.42

3

Iogn(A,2.) log (n(A,L.)P+_
i_

27.44 21.44

27.28 22.16

27,28 24.53

29.54 20.54

29.06 20.56

26.8 22.2

29.71 17.51

26.2 24.1

29.54 25.24

28.3 ! 21,6

25°8 T 22.7

25,14 i 22.13

25,28 22°2

25,32 20.32
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by the unpaired last neutron, the 49th one. For neutron numbers from

39 to 49, the last neutron has the assignment pl/2 or g9/2, and its

levels are expected to be spaced close together. Therefore, if the

ground state is g9/2, it is very likely that the first excited state is

1/2 -. For N = 49, the assignment given in Table VI-1 in reference

43 through the shell model is g9/2_ therefore, we exl_t pl/2 for the

first excited state. This pred_ctlon was checked in the following way:

all odd A nuclei with N = 49 listed in reference 42 were picked up.

8 S 87 , 85These are 42Mo91, 40 Z_9, 38 _ ' 36k_. and 34Se 83. All of

them have spin-parity of 9/2 +for the ground state and of 1/2 - for

the first excited state without exception. Therefore, assignment of

1/2 - to the first excited state of the daughter of this transition,

(79, 30), is quite justifiable.

To predict the spacing between the lowest excited state and

the ground si'ate, general deduction from empirical data was again

used. The spacing is generally largo at closed shells, someti_ s of the

order of a few Mev, and it goes down to the order of a few hundred

key in the intermediate region. Most of the elements concerned _n

this research are near magic numberst due to the fact that the abundance

peaks concentrate at magic numbers_ mast of them ai 28,50 and 32.

Our cases were solved, therefore, by investigating the general behavior

o{: the level spacing of the first few e-:cited states mostly in these
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regions.

5o

Z 28

(Mev) E'1 '}2

Some of the empirical properties deduced are:

5O

3O

1.8

40 52

30 30
I

1 l
,, , I

54

3O

0.8

all in the 2 +state, where E1 is the 1st excited level above the ground

state in Mev.

In effect_ we can summarize what was done to select the beta

nuclel as follows: nuclei whose abundance is too small were simply

discarded; some of the lowest excited states were included only in case

the ground sta_'e spin and parity asslgnment prohibited the beta process

in too high a degree to give any appreciable contribution to the total

rate and when the spin and parity assignment to some of the low ex-

cited states predicted a mucil less forbidden beta process wi_'h a fair

amount of certainty° If both tha ground and the low excited states

showed too hlgh a degree of forbiddenness or whenever the sp_n and

parity assignment were too amblguous_ such nucleus was simply dlscarded.

I believe the treatment of the problem in the way described

above is more extensive than necessaryt because_ aci'ually_ only a few

key nuclei govern the final beta process. If we do not include higher

exclted states in balancing both sldes of the equation (2-12) imposed

on beta transltlons, we shouldt perhaps, include more than ten elements

on each slde_ but when we include all the excited states as was done in



the final abundance calculatlons (ll-gb), it was found, after investi-

gation, that it is only the maximum nucleus and its daughter nucleus

in both directions of decay, thus a total of four nucleb which really

govern the total process. Out of about 30 nuclei selected here for

each EF t therefore_ only about 4 remained in the final calculation.

However_ because of the importance of those key nuclei, I belleve it

is worthwhile to start from about 50 nuclei and apply careful sorting

procedures as was done here.
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11-9 EQUILIBRIUM ABUNDANCE CALCULATIONS

a. A Sample Calculation

A sample calculation was made including all the nuclei just

selected in the previous section, il-Ot but without the inclusion of ex-

cited states higher than those considered there, at EF =15 Mev and

9
T=5xl0 °K.

until np and

emitted per unlt time was equal to that of the electrons captured per

unit time to within 0.1%. The result is

The computer was instructed to continue computation

nn were adjusted such that the total number of electrons

n = 1031°725 t and np = nn x 10 -13:584n

while the some quantities obtained in section il-5 without the beta

condition are nn = 1032 + 1- ,and np =n nx10"14-+ 1

The general agreement is good.
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bo Final Abundance Calculations

(i) Nuclear Level Structure - The procedure to be followed

for the final abundance calculations is outlined in Section !i-4. The

formulae presented in that section together with photo-beta equations

(2-34) and (2-35) with the Fermi functlon f obtained in Section 11-6

provide us with all the necessary relations. In the final calculations,

the summation over all the excited nuclear levels has to be carried out.

Up till now _(A,Z) which appears in (2-9) was set equal to 2o However,

now this approximation is dropped and the exact form of _(ArZ) in

(2-11) is computed, carrying out the summation over all the excited

states. There are two other places in which _he summation over excited

nuclear levels becomes necessary; one is in the partition funct|on (2-35a)

in photo-beta processes and the other is the summation Z _. a i appear-
I

I

ing in the equatlon (2-34) which represents the total photo-beta rate per

nucleus, if the states involved are just the first few and all the spin-

parity assignments have been glven for each state as in the case of

Section ll-9a there is no problem°

When a sufficiently large number of levels and high values of

level densities are involved_ a conventional statistical approach is

adequate° That is_ we can just replace the sum by integration over the

quantity of interest times level density. Exclted energy levels of about

8 Mev are rather well known through neutron resonances. In this and
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higher regions the level spacing is sufficiently small and conventlonai

level density formulae are valid. In the simplest form this can be ex-

pressed as

where p(u) is the level density and u is the energy of the excited

level, and a and C are constants. Some rough estimates of a and

C are given in reference 44, p. 372. O uite a few improvements have

been made on this original form, and now very complicated expressions

designed to make best fits to the experimental results are avai!able° (45)

Unfortunately, however, such formulae are not much help in the present

problem, because the contribution to the photo-beta reaction is ex-

pected to be greatest from the excited levels around 3 to 6 Mev in the

temperature range in which we are presently interested. (29) This state-

ment is further confirmed by the results of actual calculations carried

out in this research.

(2-36)

The conventional levet density formulae do not give good results

for excited levels in the region 3-6 Mev. For some of the terrestrial

elemen|s, the level structure of nuclei is rather well known. Ericson

pointed out that if the logarithm of the total number of nuclear levels

below a given excitation energy N versus that energy u is plotted, a

good stralght-line relation is obtained. Levels of S33, F¢ 58, Fe 55, F57

56
and M n are plotted in this manner in reference 46; level structure thus
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shown in graph!cal form is distinct up to an excitation energy of about

61 4.5, 4, 3.5 and 2.5 Mev for S33 Fe58, Fe551 Fg57 and M_ 56

respectively.

From the experimental data compiled in reference 421 slmilar

graphs were plotted for other elements also. A typical example is shown

in Figure 7. The staircase in Figure 7 clusters closely about the straight

line. This line can be extrapolated to 6 or 7 Mev where conventional

level density formulae start to become applicable. With the help of

plots like Figure 7, our present difficulty in the summation of excited

states is overcome. Namely, from the way such a figure is plotted, it is

clear that the following relation applies:

N = exp Ea( u- Uo)]

where N is the total number of states up to the excitation energy u,

and "a" and uo are constants which are determined by the slope and

the intercept of the straight line drawn along the staircase, respectively.

Because "a" and uo are known through this graphical method, we are

now provided with a me=ns of direct summation over all the excited states

up to about 6 to 8 Mev. In the present research this method was adopted

up to 10 Mev (that is, the straight line extrapolation was e;ctended to 10

Mev) and the levels were terminated there. The result revealed that this

method is justified up to T =5 billion degrees (the contribution from higher

excited states can be neglected if the temperature is not too high)lbut a

serious deviation was noted at 10 billion degrees.

(2-37)
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Questions may arise as to how this method can be applied to

nuclel whose level structures are not known experimentally, as is the

case wlth most of the neutron rich nuclei we have to deal with. This

problem has been overcome as follows. Recently more systematic in-

vestlgatlons along this line were made by Cameron et al, (47) in which

sufflciently large amounts of emplrical data were accumulated° From

these data were determined emplrical values of a and uo which

appear in (2-37). Thelr results were:

a = 0.020 A (Mev -1) for odd-add nuclei

a = 0.016 A (Mev "1) for all except odd-odd nuclei.

No such clear-cut expression is possible for uo because the intercept

spreads out all over a large domain rather randomly, but the over-all

average is taken to be

u .-" - 0.5 Mev
O

( 2- 38a)

(2-38b)

This value of uo is adequate when too high an accuracy is not required.

For instance, (2-38b) along with (2-38a) was used in evaluating (_(A,;)

in (2-9) and (2-11), because the number of nuclei involved is tremendous

(about 400 nuclei) and because a h,'gh degree of accuracy is not required

in this case.

A more detailed treatment is desirable in the final calculation of

photo-beta rates because only four nuclel are involved for a given density.

The empirical values of "a" given in (2-38a) are, howeveb more or less
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universal and they are thought to be more reliable than those determined

through an individual approach, because, for neutron-rlch nuclei, for

whose properties there is no direct experimental data, no direct individual

approach is pos._ible. To evaluate u° , the author made use of the fact

that many of the nuclear properties are determined by the unpaired

nucleons, the last nucleon in the partially filled shell, and, therefore, it

is possible to deduce a rough empirical estimate of the level structure by

investigating the level structure of terrestrially existing nuclei whose

emplr'cal data are available and whose odd nucleon number is the same

as that of the neutron-rich nucleus being considered. Even thoL:gh this

is a rather indirect approach, it turned out that uo obtained in this manner

seemed much more reliable than that in (2-38b).

In the procedure followed, graphs llke Figure 7 were first plotted

for all the nuclei available in e_perirnental data such as reference 42,

of the same number of N or

For |nstance_ in determining

2L as the neutron-rich nucleus of interest.

79

uo of "the beta-decay key nucleus 28Ni

at 15 Mev _n Tab!e 5, o staircase, l_ke that in Figure 7, was plotted for

all the elements wlth N = 51 and also wi_h Z =28: which were found in

empirical data° S_sch plots were also made for many o_her nuclei bo._h

inside of and outside of the regions near magic numbers in order to see the

general effect of closed shells. Then, a s_ralght line was drawn with the

slope "a" ob_'ci ned from (2-38a) through the lower porHons of the s_alrcase,
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and finally the intercept uo was read off for each nucleus appearing

in Table 5, and for four more nuclei which govern the beta process at

EF = 25 Mev which are introduced in Section 11-9b (_ii).

(if) Spin and Parity Distribution - The statistical weight

(2 Ji + 1) and (ft)i for the excited state i appearing in the expression

for the photo-beta rate and the abundance formula are evaluated through

the use of spin and parity distribution functions.

The spin distribution is predicted theoretically to be (45'46)

(2-39)

where p (J) is the densl'l'y of levels with spin J, p (0) is the density of

levels wlth zero spin, "r is the nuclear temperature and C is a constant.

Some authors use a symbol g instead of 2C'r of the above which are

related to each other by

is a parameter which characterizes ':.'he d_stributlon funckion and is a

slowly varying function of the enerl_y of the excited s/'ates u through "r.

The first problem we have to face in using equalion (2-39) is that of select-

ing the value of 2C'r(org) to be employed.

This parameter for light nuclei (eog., A128) is investlgated by

Hlbdon_ (48) Hibdon evaluated the constant C for a nuclear radius

(2-40)



R = 1.4A 1/3 x 10-13 cm to be

Io4

C = _ B2A5/3/55J Mev "1

where A isthe mass number and B is a constant which when set

equal to 0.55 gives the best fit to the observed level densities. He

concluded that 2C'r =6 (corresponding to "r = 2.1 Mev) gives the

best fit to the observational results for A128.

Huizenga investigated the effects of different assignments of

on the isomeric cross section ratios in the region of heavier nuclei of

A from about 80 to 200. (49)

(2-41)

Reference 49(a)

B_81
82 90 115

Se Z_ I n

2<,1<3 Z,,,,5
,,t

_eference 49(b I

Au 197 i

Vlhen6=2,2C',"=S;,&=S

= 10 to 2C'r = 200,

large change in 2C'ro

corresponds to 2C'r =18;/=5 to 2C'r =50;

Generally_ a small change of _ corresponds to a

in the present research_ the following approach

was adopted. Nuclear tem[_erature "r is defined as the inverse of the

derivative of entropy S with respect to the excited state energy U_ while

entropy is the logarithm of nuclear level density _ (U),

L;_u _ Lt
(2-42)
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It may be argued that it is rather meaningless to carry out

detailed calculations of nuclear temperatures as a function of U since

it is a very slowly varying function and especially because in the inter-

mediate energy range of about 3 Mev which we encounter in the photo-

beta processes suck, a statistical approach may not be well justified.

However, just to satisfy my own curiosity _" was calculated through

equation (2-42) using _he simplest e'_presslon of nuclear level density

given in (2-36) which was taken from reference 44_ and the numerical

values of constants given on p. 372 of the same reference were used,

as they were thought to be adequate when we are making order-of-

magnitude estimates. Equation (2-z11) with B ( = 0.55) given by Hibdon

was used to evaluate C. in this way 2C'r was calculated° Some of the

results are listed below.

U

(Mev)

1.3
2

2.5

3

4.1
6ol

8ol
10

-at A = 67

9.8
12_3

13.6

14o9
17.4

21 o2

24,5

27_1

2C -r

at A =-83

10
12,,4

13.7

15.1

17o6

21.5

24..8

27.5

] at A = 121

13_4

16_4

18.2

20

23_4

28_4

32.8

36.4

One of the most general conclusions from Huizenga's work is that

about 2 to 5 for heavier elements. This agrees w_th my results shown

is
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above_ because they indicate that for A about 60-120_ _ is about

2 to 4 when U is between ! and 10 Mev, Hibdon_s best fit (2C_" =6)

corresponds to _ = 1.73, His investigation was done for neutron re-

sonances which involve excited levels at about 8 Mev, The comparison

.(p. to -)
of his value with the values listed above may give an impression that

the latter are rather hlgh in value, However1 we note that 2C_r is an

increasing function of mass number AI through (2-41)1 and we expect

higher numerical values of 2C'r for heavier elements, it may be

worthwhile to emphasize at this point that what we are concerned about

is the general behavior of _ (the parameter characterizing the spin

distribution) and not its exact numerical valuer and we can conclude

from the above comparisons that the method outlined previously is

satisfactory as a means of evaluaHng the spin distribution function in

our present problem.

Having settled the parameter J (or 2C'r) in equation (2-39) for

the spin dlstrlbutionl we next discuss how this formula is to be applied

to our problem,

For this purpose it is usefuJ to see the general behavior of the spln

distribution given by (2-39), For different discrete values of .11

first computed for a typical value of _--3, It turned out that

0 I j 2 3 4 5 6 7 1
!

o.07o 18j0.230.2o7 0,!490 0900.c450,0i91

p (J) was

J
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That is, it is meaningless to include J > 10. Therefore, the statistical

weight factor (2J i + 1) of the ith level was computed by taking the

average through the relation

: o =-i) (2- 43)

D:o
The general result is that for lower excited states around a few Mev,

the average spin < J > is about 2 to 3, while for excited levels as

high as about 10 Mev, < _ > goes up to about 4 to 5. For heavier

elements higher spins were obtained at the same energy. For instance,

for A = 67, < J-> =2.3 and 4.1 for U = 1.3 and 10 Mev respectively;

for A = 83, < J > =2.65 and 4.2 for U = 2 and 10 Mev respectively; and

for A = 121, < J > =2°8 and 4,9 for U = 1.4 and 10 Mev respectively.

For all the values of A illustrated above, the average spin is about 3 at

an energy of 3 Mev. The region of spin of about 2 to 3_5 seems to give

greatest contribution to the photo-beta rates at T =5 billion degrees.

Th;s result agrees with the general behavior-in the work of Hibdon

and Hulzenga. in reference 49(a), the distribution of spin is plotted

(p.1307) against J. Maximum J comes at about 2.5 fore4' =3, while 4°6

is the approximate value for/=5. My results quoted above w.,,re com-

puted at02 :: 3, In Hibdon's paper (reference 48, p. 191) the maximum

is at around J = 1.2. For lighter nuclei higher spins are very unlikely

to occur because the possible angular momentum for small 2. or N is
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restricted to small values as is clear from the shell model. On the

other hand, when Z or N approaches or exceeds 50, a spin as high as 3.5

to 4.5 is possible through the g7/2 and g9/2 levels. This argument applies

to ground states. Generally, higher spins are expected to be posslble for

excited states than for ground states. Therefore, our values of average

spin of 2 to 5 for A in the reglon from about 60 to 120 and excited energy

levels from a few Mev to about 10 tvbv are perfectly reasonable. We

note, from reference 49, _ of 3 to 5 is expected in our case, whlch

corresponds to a maximum spin of 2.5 to 4.6°

Having settled the problem of evaluation of the sta_isl-lcal weights

(2J + 1), it now remains to show how the comparative l'_alf ilfe (Ft) ap-

pearing in the formula for the photo-beta rate is to be estimated. As

was noted in Section 11-7, the effect of the excited states on the beta-

rate comes as a perturbation to the rate of transitions between ground

states. It is, therefore, sufflciont to include only allowed transitions for

excited sta_'eso Consequently, log ft was set equal to 5.5 for all the

transitions between excited states. The question then arises as to which

of all possible transi?ions between all possible pairs of o-<cited levels of

the parent nucleus and i'hose of tile daughter nucleus are allowed tran-

sitions. That is, each component of the photo-beta rate of excTted states

_a i Xi')in (2.-34) with ft set equal to 10505 must be mulfil_lied by the

probability of its being an alIowed transition, be:ore the summation is
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carried oub supposing that every possible pair of excited levels of the

parent and the daughter nuclei were included in the summation.

The transitions between ground states and the lowest few excited

levels up to about 1 to 2 Mev were determined by the method outlined

in Section il-8. The summation over the lowest states and that over the

rest of the excited states were carried out independently and both were

summedtogether at the end° It was necessary to follow this order becauset

while the former was settled already by the method of SecHon !!-8, the

latter has to be treated by the method to be outlined in this section.

The probability of the occurance of an allowed transition among

all possible transitions between all possible pairs of excited states of

the parent and the daughter nuclei was predicted in the following manner:

Let us consider a transrtion between the ith state of a parent nucleus

(A, Z) and the jth state of its daughter nucleus (A', Z'). The selection

rule for an allowed transition requires that for an allowed transition the

spin change be 0 or 1 with no parity change° That is, for any given spin

Ji of the ith state of the parent, _'he spin Jj of ther_th state o_ the daughter

can be only equal to Ji or Ji + 1 for Ji>/ 1 and equal to J[ or

Ji +1 for JL= Oo The prob_bility oF the spin of the ith state of the

parent to be a particu'arvalue J; is _('J-_ _ZZ _DC_'4), thatof

the jth state of the daughter nucleus to be a particular value .Jj is slmilarlyl0

_(J_) /_$_._0_(_-#_). J is supposedto take any discrete value
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between 0 and 10. Therefore, for each Ji from 0 to ]0 of the parent,

ies
the probabilit/of the spin to be actually Ji is multiplied by the sum of

the probabilit that the spin of the daughter be an_ne of the Ji -+ 1

ies
and Ji ' that is, the sum of the probabilit/ of these three cases (or of the

two cases, i =Ji and J j = Ji + 1, when Ji- 0). Then, all such quanti-

ties evaluated for Ji form 0 up to 10 are added together. According to

Ericson (p. 449 reference 46), positive and negative parities are almost

equally probable. Then, for either parity of the ith state of the parent,

the probability for the parity of therjth state of the daughter to be the

same as that of the parent is 1/2. This is multiplied by the probability

of satisfying the spin selection rule just outlinQd. Multiplying this last

quanity (the probability for a particular transition to satisfy both spin and

parity selection rules for an allowed transition) by the photo-beta rate of

this transition _'a i _'i) and carrying out the summation over all such terms

for all possible pairs between the excited states of the parent and those of

the daughter, the total photo-beta rate per nucleus of a particular nucleus

(A, 2.)is found°

It turns out, according to this method, that there is generally

about one chance in four that tl_is transition is an allowed transition in

lower excited states of a few Mev, while there is only about one chance

out of 5 to 6 for higher excitation levels of about 6 to 8 Mev° This is as

expected because for lower states a smaller varie_y cf spin values is
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possible (average J is :mailer) and therefore there is a greater

chance for the parent and the daughter to have similar spin values

while a greater range of spin becomes available with the increase

of excited levels and the chance for coincidence (_j = Ji "± 1_ 0)

becomes less,

(iii)Discussion of the Results - The final calculation was

carried out in the range of densities and temperatures corresponding to

T 9 = 2, 3, 4, 5, l0 ; Te=T(°K)/109

EF = 0.17, 5, 10, 15, 20, 23, 25, 30 Mev.

After a careful re-examination of the nuclei for beta transitions

selected in Section il-8_ four nuclei for each EF listed in Table 5

turned out to be the most important and these were chosen as the key

nuclei to govern the pho._o-beta condition. In Table 5_ g(T), P+ _ and
w

tl_e expected total rate 13+ = P+ n(A,Z), using the n(A,2.) from

Section il-5_ are tabulated for each nucleus.

The informaHon obtained about the properties of the ground

state and the first e:'cited states in Section 11-8 were used in the summation

over the low energy region_ and the summation over the region of higher

excited levels was carried out in the manner just described in sub-sectlon

ll-9b(1).

Equation_(2-22a), (2-22b)_ and (2-30) through (2-33) were used

to obtain f as a function of V/o, the energy difference before and after
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TABLE 5 - The key nuclei for photo-beta reactions, their photo-beta reaction rates

P÷ ( +for e" capture and - for e" emission)_ partition functions _(T), and rough estimates

of-P+ n(A,Z), where n(A,Z) were taken from Section 11-5, and P+ =
m I

[In'2(2J i + 1)fie'uV'kT/(ft) i]/_(T), o(T) = _ (2Jk+ 1)e -uk/kT in cgs units, at different

electron Fermi energies.

t(Mev)
t
_k+
i

28Ni65
_5c + ........

e - 27Co 65

n - 28Ni 67

k+

!e- 30Zn 81 '

in- 32Ge 83

i k + i_.,,.,a
i

¢ + !29Cu t9
11_. ,..... !

28 Ni 79

n -

k+

n -

i

k+

Key
qucleus

T

29Cu 67

c_(T)

5.905

7.877

9,681

4.645

33As83 6.734

!30Zn 81

Nb121_41

4oz223
I ,,7 121 I
i4u_ il
40Z, 121

38S_I 19

37Rb 119

39Y 121

5.698

6.733

o ' -3 -1 1L g P.-k(number/sec-nucleus_Log_(cm sec ),where,_P+_n(A,Z)

-Sx]09oi_3xl-O_-okl--2x_Og--_-xqOO°_3x-_09oK2.109o_ 1

t
.... l/ t t -7.80 / ...... l , /
-2.053!:2.89!!-__o95 25.71 !24.87 24.31
-2o2931-!-3.8'i!i-4._0 s6oso_4.zo ss._

I-4.3 
-3.001

+0o 160

27°0 "22.64

;26080

17.80

26.74

7.079 j - 1.634 125.09 23.33

I

25.045.547

4.738

6.593

7.395

16o604

4_685

-8.16

I '-. 1.70
I

-5.16

-2.86

-2.766 -6°60

-0,640 ! -2.89

-2._551 1 -6,80
!

+3.761 -1,6

+1,606! -4.1
i.,

+3o8881-1o63.076

1.710

0,053
+Io810 i -3_5

2°226 11_.2°5
"1,203 ! L4o3

3.446!-2o0

,%5021-1..8
1

, I ,, , ,

-13,0

'_ I_76'

-6.92

-3.02

i -9o76

-2°90
_: ,, ,

! 4o.4
l
! ,

! -3,42

i -8.1

i I-2o9
_ _ -7°52

i -2°67

-2,66

I -2,66
. J i ,.

7.774

28 °66
i

28.62

27.60

28.87

2.9.94

28 _05

32°63

32.67

34.75

33°08

31.53

32°82

34°35

34.-,65

6.490

25.04

27.69

23.80
,I

27,27

26.96

29 °27
!.

_27_77

126.80

i 27.31

128o90

_29o32
i

5,143

21.88

27,68

20.20

25.45

22.96

27.97

,23°75

_26.63
!

i23.5

128.46
I



113

the transition. The comparative half l lfel ftt and the statistical

weights1 u(T), were taken care of in the manner just described in

Section 11-9b(ii).

The rate per nucleus for each element1 P+ I for each Fermi

energy EF as a function of temperature was calculated through (2-34)

and (2-35)! and plotted. The results are tabulated in Table 5. The

typical curves for four nuclei at EF =0.171 15 and 23 Mov are shown

in Figure 8° The curves for other values of EF are not shown in Figure 8

to avoid over-crowdlng.

The rate per nucleu_ times the abundance _+ = P+ n(A,Z) is

a measure of the importance of the nucleus (A1 Z) in the photo-beta

summation in (2-12). In Table 5, the nucleus marked by k is the maximum

nucleus (the leading term in the summation) for the c_pture process; that

marked by e is the maximum for tho eXectron emission process; that

marked by c is the minor element in capture and is at the same time the

daughter of the electron emission o_ the nucleus marked e; and finally

the nucleus marked n is the minor element for eleci-ron emission and at

the same time the daughter of the leading cap[ure process of nucleus

marked ko There are a number of captures and em'ss_ons between nuclei

marked by k and n and between those marked by c and el but k is expected

to be stronger than cl while c is expected to be st_'onger than n. This

argument applies especlally to ground states,
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Let us focus our attention on the last three columns of Table 5,

where the measure of importance of individual nuclei .__.+ is displayed.

The exact number listed should not be taken too seriously, because the

abundance n(A,Z) obtained in Section 11-5 (which is not the final

abundance but only the first order ap2roximation ) was used in this com-

putation. In the final equilibrium calculation, the sum of contrlbutlons

from capture nuclei k and c must be exactly equal to the sum of those

from emission _c_ [. e and n, but this is not necessarily so in Table 5.

For instance, for EF = 10 Mev, the .)2 _'i is hlgher than Z _, and, j
therefore the nn and np obtalned in Section il-5 must be re-adjusted

so that the to_al abundance of emission nuclel Zn B1 and Ge 83 will be

somewhat reduced while those of capture nuclel As 83 and Ge 81 will be

somewhat increased, until both sldes of the equation (2-12) become equal.

In effect, thls _.aK_s . the eqLsilibrium point

be shifted to the less neutron rich side than in !!-5. As is displayed in

Table 3, this sh_ft is neg!igibly sma!i at 10 Mev (we :tii! have Ge 82 as

the top nucleus, and the general features of the curve are not changed)°

Thls shift to the less neutron rlch side is vls,.'ble at 20 Mev and 5 billion

degrees, where the top nucleus in the final calculation stays at Ni 80

(the I'4 - 50 shell) and does not swll'ch over to Zr 122 at the N - 82 shell,

but in _he previous caiculatlon in Section II-5 the top nucleus was 2.r122.

It may be noted_ however, that both in Section 11-5 and hcre the peak at

115



the N =50 magic number and the 82 magic number are comparable at

20 Mev, and that a slight change in equilibrium condition can change

the maximum point from one peak to another. As will be shown later,

the peal< does go up to Zr 122 at 2 billion degrees, where the cold

matter approximation applies better.

It is expected that at low enough temperatures where the contri-

bution to photo-beta rates by higher excited states becomes negliglble,

the nafure of the ground and the lowest excited states are more obvious.

From our results, that evidently happens at 2 billion degrees, because at

this temperature the behavior is just as expected from the properties of

these lowest states. Nameiy, in all cases at 2 billion degrees, the major

nuclei marked by k and e have larger values of total rate p+ than

those of the minor nuclei c and n expected from the properties of the

lowest states, while this is not true if the temperal u,'e is increased to 5

billion degrees. For instance, at 5 Mov, the total rate of the minor

nucleus Ni 67 is la,'ger than that of the major nucleus Co 65 for the

emission process, and similar switching from major to minor and minor to

major nuclei happens at 23 Mev, too. This _s because of the fact that

file crlter_a for the major and minor nuclei were orlg_nally made through

the selection rules applied to the particular properties of the ground and

lowest excited states only, while as temperature increases, the contri-

bution from higher excited states becomes more and more important and
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is independent of the spin and parlty of the lowest states. The general

effect is to make indlvidual nuclei more indistinguishable. This

deviation of the behavlor from that expected from the cold matter ap-

proxlmation is larger for hlgher temperatures.

Once we knew P+ for each key nucleus involved, our problem

was solved uniquely by following the procedure described in Sectlon

11-4, by the use of the equations (2-9) through (2-15). P+ for all key
m

nuclel cf the pho_o-beta processes were spored as a function of Fermi

energy and temperature as the input to the IBM 7094 computer so that

equations (2-10) and (2-12) supply one functlon relating nn and np.

Another relation is furnlshed by (2-14) and (2-13a) or (2-13b) for any

glven EF and temperature. The two unknowns nn and np are determined

uniquely by these two relatlons_

first make a guess o9 nn and np

The actual procedure followed was to

from the previous results of Section 11-5,

substitute i'hese values in_o bolh sides of (2-12) and (2-14)t and then cal-

culate each side of each equation separately including all the nuclei of

interest, about 400 in the final abundance ca!cuiatlon through (2-14)

for the whole range of density, and all the key nuclei for beta reactions

in (2-12), and then compare each side of the equation with the other°

This was done both for equation (2-12) and (2-14) slmultaneouslyt and

was repeated until the final re-adjustment of nn and np made the right-

hand side and _he left-hand side agree to within 0.1%. V'hen this con-

dition was fulfilled for a given EF and T, the program was repeated with
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a different set of values of EF and T, until the whole ranges of EF

and T listed at the beginning were covered. The corresponding

density was calculated simultaneously through equation (2-.15), the

summation being taken over all of the 400 nuclei°

The final values o,_ the free neutron number density nn and the

ratio of free proton number density to neutron number density n/n n in

logarithmic scale as a function of density for a family of temperatures

are plotted in Figures 9 and 10. The dashed curves correspond to the

results of Section 11-5, at T = 5 x 109 °K. The agreement is satisfactory,

noting the rough apptoximatlon adopted in Section 11-5. The temper-

Born quantities nn and n/n n increase rapidlyature effect is striking. _'

with temperature. With the increase of density, n n increases but n/n n

decreases. These grapl_s show that, at a density of about 3 x 1011 gm/cm 3

and above, neutrons are dominant and the proton number is negligible.

As the density goes below p c "" 3 x 1011 gm/cm 3 the free neutron

number drops more s4.eeply at lower temperatures. For instance, at

T =2 x 109 OK and p ~ 1011 gm/cm3r slightly below the critical density

Pc' the neutron number density is 10 -10 times the va!ue at Pc" 3 x 1011

gm/cm 3, _nd, therefore, we can regard 2 bil!ion degreos as a freezing

point, That is, at T = 2 x 109 o[,_, there exists a distinct transition of

,a
equillb_ium con_:Tgurations from heavy nuclel to neutrons at around 3 x l 0

gm/cm 3 and the cold matler appro-¢_matlon of Section il-3 is perfectly
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valid. The straight llne near the top of Figure 9 corresponds to a pure

neutron configuration.

The final results obtained in this section are displayed in

Figures 11 through 16 at EF = 0.17, 5, 10, 15, 20 and 23/vlev, respective-

ly, at a temperature of 5 billion degrees.

The first 6 nuclei from the maximum in the descending order and

their abundances are tabulated in Table 3 fcr both the first results (!1-5)

and the final results (il-9b). A slight shift from the zero-temperature

point toward lighter elements and a lesser degree of shift toward the less

neutron-rich side (smaller value of molecular weight 1_,,,, A/Z) at higher

temperatures are expected and such effects are generally noticeable in

Table 3, especially at EF =20 Mev, as has already been discussed, where

the two peaks at Ni 80 and Z 122 are comparable. However, in all other

cases a slight change in shape of the peak in these two results was not

noticeable in the abundance curves, and consequently, to avoid repei'ition,

the first abundance curves plotted in Section 11-5 are not shown here.

The change in abundances of nuclei with increase of density as discussed

in Section ib5 and displayed in Figure 3 applies exactly in our final

result. This can be easily checked by comparing each abundance curve

displayed in Figures 11 through 16 of this section with each corresponding

curve displayed in Figure 3 el: Section IE-5o The only noticeable difference

two results comes at 20 Mev, where the peal: at Z 122 isbetween these
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higher than that at Hi 80 in the previous results (Section 11-5), while

it is reversed in the final results in this section (Figure 15). A slight

increase of humps at lighter isotopes of the same elements is noticed,

too. For instance, a careful comparison shows that the Hi 64 hump in

Figure 12 is higher than that in Figure 3, which is the expected effect

of temperature.

A striking change in shape of the abundance curve is noticed if

we compare the results at T = 5 x 109 °K and those at 2 x 109 OK . For

th;s purpose the abundance curves at these temperatures at EF = 10 Mev

are plotted together in Figure 17. The maximum nucleus is the same, that

is, Ge 82. The difference is that, at the lower temperature (2 x 109 °K),

the peak is sharply concentrated around Ge 82 and that the contribution

of all elements other than a few iso.*opes of Ge, Zn, Se and Hi is negli-

gible, with the aSundance less than 10-10 times the maximum, while

other elements around the peak become more important with the increase

of temperature. This is why for a very cold body it _s justified to use the

method in Section !!-3 as a first order approximation, where only the top

nucleus was included. When the temperature becomes as high as 5 x 109

°K, this is no longer justified, because in Section 11-3 we used the ap-

proximation p = A m n(A m, Zm)/N o (where A m and Z m is the mass number

and atomic number of the top element and N o is the Avogadro's number)

but at sufficiently high temperatures this approximation breaks down and

t

I_8
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an exact summation of p = ._ A i n(Ai, ZI)/N ° must be carried out over
i

all the nuclei of appreciable abundance, as was done in this section.

As can be noticed in Figure 17, the increase of abundance with the

increase of temperature is more significant on the ligher side of the peak.

As temperature is increased above 5 billion degrees up to a point

where a sudden translt_on to the neutron phase takes place, the behavior

nearly remains constant. At this poinb a transiHon from the peak at the

heavier element group to the peak at the lighter element group takes

place very quickly and all elements are converted to pure neutrons

within a very narrow temperature range. The exact temperature at which

this transition to the neutron configuration takes place is very sensitive

to dens_tyo For a density higher than _ 1012 gm/cm 3 we have a neutro-

nle configurat.;on even at zero temperature; for slightly lower density,

the transition temperature is expected to be slightly higher than 5 billion

degrees. For the much lower density of about 107~ 1010 gm/cm31 the

transition temperature is near but somewhat lower than 10 billion degrees.

For a density lower than ~ 10 7 gm/cm 3 transitions, first to helium at

around 5 ~ 6 billion degrees_ and then to neutrons at about 10 billion

degrees, are expected from our investigation° A'? T =1010 °K, _he equl-

libra.urn point is shifted to neutrons at all densit_es cons.:dered (0 Mev

< EF < 30 Mev)o

The nuclear abundances at T --2 x 109 OK are depicted in Fig. 18.

The general behavior is the same as at T -5 x 109 OK (Figure 3). Let us
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examine the EF =5 Mev curve. At T = 5 x 109 OK (Figure 12)t the

abundances of other nuclei (than the top nucleus) is so great that the

peak is almost flab in the broad range from A = 20 to almost 901 and

it involves various kinds of isotopesof the various elements. Nuclear

reactions in each direction through complicated networks connecting

great numbers of nuclei, at this temperature_ are sufficiently rapid which

allows the existence of unstable elements wi_h noticeable abundance.

Vlhen the temperature is decreased to 2 x 109 °K_ the curve is seen to

have changed in that sharp peaks now appear at Ni 66 and near Se84

(dac_ed curve in Figure 18)o It is interesting to compare this curve with

Figure 2 for a cold body. In Figuro 2_ the two peaks at Ni 66 and Se84

are almost comparablet though the latter enjoyes the maximum position.

In the final calculation at T =5 x 109 °K, the former peal: at Ni 66 is

much more pronounced_ but the curve at 2 x 109 OK shows that the latter

seems to gain a more important position. However_ we do not know

whether a further decrease of temperature will allow the actua! switching

over cf the maximum from N166 to Se84. The equilibrium conditions dis-

cussed in the beginning of Section 1!-4 break down at around 2 billion

de_rees and it is meaningless to carry out calculations for lower temper-

ature. Both the approach for cold matter and that emp!oyed in this section

are subject to various kinds of uncertainties (which arise, for instance_

from the way in which the photo-beta reactions were treated and their



key nuclei were se!ected_ etc.), and the most legitimate treatment will

be that we do not determine the maximum nucleus either at Ni 66 nor

at Se84 but simply regard that either one could be the candidate with

a small estimated error. This is no difficulty at all in our case_ because

in our composition calculation of the surface layers of neutron stars_ all

the nuclei near the peak (not only the maximum) are included in the

summation_ and, therefore_ it does not matter much which is the actual

maximum.

I wlsh to emphaslze the positlve sider namely_ that the abundance

distribution obtained in two entlrely different approaches leads to a

striking agreemenb which is clear from comparing the results of this

sectlon with those in Section 11-3.

Similar calculations were carried out at 3 and 4 billlon degrees

also. At 4 billion degrees no interesting change from 5 billion degrees

is observed. The abundance curves display almest similar shapes at the

same positions. At 3 bi!lion degrees the numerical values o_ the various

quantities are almost halfway between the case of 5 billion and 2 billion

degrees. The abundance curves are also intermediate in their shapes_

while the peaks remain at the same positions. At 20 Mev_ the maximum

stays at Ni down to 3 billion degrees° The transition from the peak near

Ni to the peak near Zr for lower temperatures_ the_'efore_ has occured

between 3 and 2 bil!ion degrees°
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I should now like to descrrbe how the h_gh density region

was treated, in Section il-5, it was noted that the s_mple technique

of adjustment used in that section failed for EF = 25 Mev. This indi-

cates that matter consists mostly of neutrons in this density region, as

expected. It was pointed out in Section !1-6c that under such circum-

stances (where neutrons predomlnate), some of the l ightest neutron-

rich elements like H3 and He6 may be abundant. If the temperature

_ssufficiently high, it is possible that the heavy elements around the

peak regions in Figure 2 (cold matter approximation) may coexist in

equilibrium with neutrons and some of the Iightest elements, even if

such elements are unstable against the emission of neutrons and beta

particles. Therefore, an additional investigation was made in this

high density region, namely, at EF = 20, 23, 25, and 30 Mev. After a

careful investigation of beta processes in the region of the ilghtest par-

tlcles, it was concluded that tlle following induced capture processes

are most important:

He6+ e--TH 6--_H 3+ 3n

He4+ e'---_ H3+ n

H3 + e'--_ 3n

if E_ = 21 °54 Mev is e;:ceeded

if E_ -20.6 Mev is exceeded

if E_ = 9.29 Mev is exceeded.

These endoerg[c reactions do occur _f the Fermi energy of an electron

exceeds E_. At EF = 20 Mev, only the last reaction is energetically

possible, while for 23 and 25 Mev, a!i of them are energetically possible.
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All of the above reactions are first forbidden transitions and therefore

log ft was set equal to 6.5. The curves like those in Figures 4_ 5e and

6 were used to determine f. The f values thus obtained and P+=l_n 2/(ft)_

for each case are listed below:

EF log f

(Mev) H_ He4 j He6

20 5.7 _ 4_3 _I23 6.4 ....3.1
s5 z.2 5,z 5.ss
30 7.7 i 6.8 ' 6:62

log P+H3 , He4
-0.96

- 0.26 r 2.36

i +0.54 i - 0,-,964-1.04 +0.14

Fte6

-3.56

-1.38-0°04 i

At EF =25 Mev, the following remained as the final key nuclei for beta

processes in the heavy element region: 37Rb117_ 39Y121t 33As113 and

35Brl 17. In the summations which appear in the abundance formula and

the related formulae_ all the nuclei in the peak regions of the EF --25

Mev and 30 Mev curves in Figure 2 were added to the nuclei previously

selected for EF _< 23 Mev, and the computations were repeated in-

cluding, the beta processes of the l igh"est elements.

The results are (i) the additional beta processes in the Iightest

element regions are not important enough to give any appreciable change

in the final result at EF _< 23 Mev, because i he abundance of H3t He 4

and He 6 (which, with the e'¢ception of neutrons, are expected to pre-

dominate in this region)1 as given in Table 6, are r_ot sufficiently great

at these densities; and (ii) at EF_ 25 Mev, however, the total matter

density For a given EF is greatly increased as the result of inclusion of

these beta processes.
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The final numerical results are summarized in Table 6. For

Fermi energies of 0o17, 5_ 101 151 201 23, and 25 Mev at T =5x10 9 OK

and 2 x 109 OK, the following quantities are tabulated: the density _,

the nucleus (A m, Zm) of maximum abundance, its abundance n(Am, Zm)t

the neutron number density nn, the proton number density np, the He4

H3 and He6 abundances ncc,n t, and nile6 respectively, the electron

number density net the total positive ion number density nio n, the

electron molecular weight He, and the corresponding quantity for positive

ions Pion " n(AtZ) is defined by (2-9)1 _ by (2-15), ne by (2-14),

(2-13a) and (2-13b), while the last three quantities in the table are de-

fined by

- 7_ CA ,'YL .. C

where k sums over all nuclei for k _ It and Z _0, and i sumsover all

nuclei for A >, 1 and Z >_1.

At T =5 x 109 OK and EF =0.17 Mev, the number density of helium

exceeds that of Fe56t the maximum heavy element, and there was, therefore,

some trouble in the adjustment, and the numbers in the first row in Tabel 6

are estimated to be in error to about 10%. The partial densities of helium

and iron at thls point are nearly equal, and it is expected that wlth a slight

increase _n temperature, we will get an almost pure helium configuration.
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The helium abundance, however, drops to practically nothing by the time

the temperature has dropped to 2 biilion degrees, as the first row in the

T =2 x 109 °K box in Table 6 indicates.

This table also shows that nn increases and np decreases steadily

with increasing density, but that the proton number is negligible through-

out and its importance is restricted to the fact that |t is one of the key

parameters for the solution of the problem together with nn and T. As

to the tritium and He 6, their number densities are negligible in general

but their participation in the beta process causes an effect of some

importance at 25 Mev.

At 5 billion degrees, He 4 is never important for EF > 5 Mev, the

1010neutrons are negliglble up to p ,-, gm/cm 3, and at EF =23 Mev,

the neutron number exceeds the number of nuclei of maximum abundance

N{ 80 but its partial densi+y is still less than that o{: N128.

At EF = 25 Mev, neutrons predominate° This is also demonstrated by

the value of iJe and Pion at this point. For a pure neutron configuration

He as defined in (2-44) is infinite. The sudden increase of Pe at 25 Mev

as observed in this table can be, therefore, taken as the indication that the

phase transition to neutron configuratlon has taken p{ace by the time the

Ferm| energy has rlsen to 25 Mev. The consideration o._ the behavior of

the gas for densities hlgher than this is deferred _o the next chapter. There

is no poin_" in carrying cut the calculation of this section (for the heavy
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element conflguratlon) at EF _ 30 Mev, because the deviation due to

neutrons is sosignificant already at 25 Mev.

At T = 2 x 109 OK, all light particles except neutrons are

negligible. The general behavlor of the neutron number density is

similar to the case for 5 billion degreesr except that nn drops far more

sharply wlth decreasing density at 2 billion degrees than at 5 billion

degrees° Some interesting differences between these two temperature

regions are noted in Table 6. At EF =0.17 Mev, the most abundant

nucleus shifts from Fe56 at T =2 x 109 °K to He4 at T =5 x 109 °Kt a

sllght shi._i• from Zn 80 to Ni 78 occurs at 15 Mev, and there is also a

rather signlflcant shift at 23 Mev.

In the definitions of (2-4¢)t the summation over i is carried

out over all nuclei except neutrons, while that over k is carried over

all nuclei including neutrons. If the neutron number is negiiglblet

He ~ (A--'_) and Hion ~ Ao That is, these are a measure of the average

value of the quantlties A/Z and At respectively, in the absence of

neutrons° A comparlson o_ iSion and A m is therefore interesting. The

behavlor is just as expected. Up to about 5 Mev, the effect of helium

(A =4) keeps Pion smaller than the A m of heavy nuclei. At EF =10

and 15 Mev, IJion and A m almost coincldeo As the Ferml energy is further

increasedt Pion becomes larger than Am° This is because in the definition

of ISion in (2-4¢), the summation in the numeral or includes neutrons,

while that in the denomlnator does not. As a consequence of thls_ ISion



becomes greater than a straight average of the quantity A when neutrons

predominate. The deviation is enormous especially at EF = 25 Mev,

where Pion is more than twice as large as the Am of the peak nucleus.

This is another powerful indication that transition to the neutron phase

has occured before this point is reached, somewhere between EF = 23 and

25 Mev.

The results shown in Table 6, except the first row, are estimated

to be reliable to within 5%°

11-10 DETERMINATION OF SURFACE COMPOSITION
,,,, , i i i j

Having calculated the actual abundance as a function of temper-

ature as well as of density we are now ready to complete the discussion

started in Section i1-1. We can assume that the formation of a hot neutron

star was completed at a very high temperature (say, about 10 billion degrees),

and then picture i_ as a hot, somewhat extended body, which is cooling

rapidly, mainly because of the tremendous rate of energy lossby neutrinos.

(A quanti'.ative description of neutrino cooling is de_erred to Chapter V.)

The neutrino loss rate becomes unimportant at a little below a billion

degrees; however, we noted that freezing occurs before that. Statistical

equilibrium breaks down at around two billion degrees (Section !i-4) on

the average, which means that the precise freezing point depends on the

individual processes along the individual networks, depending on the
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abundance of the nuclei involved and the rates of the processes.

However_ it is expected that all such processes break down below about

2 billion degrees. This expectation is consistent with the results just

obtained in the prevrous section (ll-9b).

For temperatures below the freezing poinb slow nuclear processes

and ordinary beta processes may_ if given enough time, change the com-

position slightly from the statistical equilibrium value. However_ the

neutrino cooling rate is still quite fast even below the freezing point

and remains so unt|l the temperature drops to about several hundred million

degrees_ and we can therefore assume that not enough time is allowed for

those slow processes to take place. V/e are particularly interested in

neutron stars with an internal temperature in the approximate range 108

to 3 x 109 OK. This is because at higher temperatures such stars cool so

rapidly that they escape any means of direct detection while at lower

temperatures they are too faint to be observed. Therefore, if we hope

to detect the star, its temperature must be restricted to the range stated

above. The information f_om x-ray measurements is perfectly consistent

with this expectat!on (Chapter V)o

The above argument leads us to the conclusion that the statistical

equil;brium configuration near the free:ing point is to be regarded as the

surface composition of our neutron star. A possible deviation from this

conclusion may come about due to diffusion processes (V-4d). When the
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scale heights near the surface are suffic|ently small, such an effect may

cause some appreciable change in the result, as seen in Chapter V.

It is, however, encouraging to note that the composition enters

the equation of state, and hence the stellar structure problem, in the

form of the molecular weight l_e or Pion or electron number density

ne and these quant;Hes are rather insensitive to temperature according

to the results shown in Table 6. (The values at 25 Mev are excluded be-

cause this energy corresponds to the neutronic phase, outside the range

of the present investigation.)A large drop in the value of He at EF-0017

Mev and T =5 x 109 OK, as compared with the value at T =2 x 109 °K,

is due to the iron-helium conversion. That is, the maximum element at

5 x 109 °K is helium with He =2, while the maximum element at 2xlO9°K

is iron whose }Je value is 2.15. He at the two extreme temperatures 2 and

5 billion degrees practically coincide at EF = 5 and 10 Mov. It is more

reasonable to attribute the discrepancy of about 3% between He at 5 and

2 billion degrees, at EF = 15 to 23 Mev, to the uncertainties inherent in

the me_hod employed, rather than to a temperature effect.

The conclusion is that in the actual construction of a final com-

posite equaticn of state to be used in our models, the most reasonable

procedure will be to take, at each given density, the average of ne(or IJe)

at 2 billion degrees and that at 5 billion degrees, no_n_, that the differ-

ence between the two is extremely small.
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CHAPTERIII

EQUATION OF STATE

I. INTRODUCTION

it was emphasized in the first chapter that the equation of state is

one of the decisive factors in stellar structure problems. There it was expressed

in a symbolic form as:

P=P (p, T, C) (3-1)

which expresses pressure as a function of density p, temperature T, and C which

represents the composition. The exact form of (3-!), of course, depends on the

particular problem we are to deal with° For instance, if the total pressure suppor-

ting the gravitational force inside a star comes from an ideal gas of particles of

number density n, it is just

P= n k T (3-2)

where k is Boltzman_s constant. In gene_ab the number density is related to

matter density in a simple way. For exampte, if a star consists of ionized nuclei

(A,Z) and completely ionized electrons, and if the partial pressure of nuclei

(A:Z) _s negligible compared with the electron pressure,

n = £/isH where iJ = A/Z, and H is the mass o._ a proton,

and P= k p T/(tJH). (3-3)

If matter consists of a completely degenerate gas of particles of number density n,

then

P = ;(1 n5/3 (3-4a)



in the non-relativistic case and

p=

in the relatlvisHc case. K 1 and
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i( 2 n4/3

/

1, 2 are constants.

(3-4b)

The above examples apply when there are no interactlon forces between

partlcles. When the interaction between particles enters, the equatlon of state

can take quite a complicated form. A more general form of the equatlon of state

which applies to the whole degenerate region includlng both extreme limits (non-

relatlvlstic and rela'i'ivlstic) is p_rticularly useful in this research and will be

derived in Sectlon 111-3o The equation of state for a real gas (meaning "with

interaction forces") is investigated in Section i_1-4o The density appearing in

the general relatlvisHc equations is not the common matter density but a total

energy density and special care must be taken to recogn|ze thls polnt. There is

also an upper ilmit to the pressure according to the theory of rela.Hvlty (Section

II-5)o These aspects will be dlscussed in later sect:ons° The composite equation

of state which is to be used in _his research is constructed in Section 111-6. Before

thab however, we should no_e that, the better the model we try for, the more it is

necessary to decal with a complex structure o_: various mixtures (no.* homogenecus

matter). For instance, in a simplest approximation we may use just a pure neutron

configuration for neutron star models. However, if we ano!yze the sltuaHon more

carefully, we find neutron mo.tte_ to be generally contaminated wi_'h various other

particles° Therefore, it will be advantageous to concern ourselves with the equation

of s_a_'e for m!xtures. In ._he most general form,

P= )" Pi(ni, T), (3-5)



That is, the total pressure P is the sum of partial pressures Pi of

each component i glvlng an appreclable contrlbutlon to the pressure, while

the partial pressure of a component Pi is related to the total denslty of matter

p (or n) through the partial density of the component nI . To evaluate the last

expression, namely the relation between the partial denslty of each component

and the total density, the relaHve concentration of each component must be

known. Before golng into the main discussion of the equation of state, i thlnk

it best, for the sake of convenience, to settle this problem of composition first.

111-2 EQUILIBRIUM CONFIGURATION OF/V_TTER AT HIGH DENSITIES
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a. General Discussion

In the previous chapter the equilibrium abundances were investigated up

to a density of about 1012 gm/cm 3, We noted that the matter consists mainly of

iron group elements (ordinary terres_rla! elements) up to a denslty of about 10 7

gm/cm3; as the denslty is increased the equil;brlum configuration shifts from these

ordinary elements to the more neutron-rlch nuclei (namely, the nuclei with la;ger

values of A and smaller values of Z/A)o The shi_t is grea_er fl_e hlgher the density,

and finally when the densi_'y reaches about 3 x 1011 gm/cm3, transformation to

neutrons begins° _t is interesting to see what happens after thal'o As the density

is further increased eventually all the heavy nuclei will dlssolve into free neutrons

by means of electron capture., and a pure neutron con_igureHon is expected to

result° However, the last s._atement is not exactly correct because neutrons are

unstable against decc_y to protons and electrons by 0.782 Mevl the neutron-
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hydrogen mass difference. Therefore, the neutron gas has to be contaminated

with protons and electrons, and the mlnlmum partial density of the proton-

electron gas must be 107 gm/cm 3. In degenerate cold matter, we can assume

that all the particles are in the lowest states. That is, the total energy is just

the sum of the rest masses of all bosons and the sum of the Fermi energies in-

cluding the rest masses of all fermions present. For a neutron-proton-electron

system the stability is acquired when the neutron Fermi energy plus 0.782 Mev

becomes equal to the sum of the electron Fermi energies and the proton Fermi

energies, because each ferm_on occupies cells of phase independently, if the

neutron Fermi energy exceeds the amount required by the above equality, two

neutrons at _he top of the Fermi sea; on colliding, could each be trans.%rmed

into a proton and an electron. This process will continue unHi the equillbHum

condition is achieved. With the fur_'her incroase in the |'o!'cfl densi','y of mat_ert

the partial densities of neutrons, pro..'ons and electrons increaser and when the

Fermi energy of the electrons reaches the rest mass of the muon, 106 Mev,

neutrons can be transformed into protons and negaHve muens through the read'ion

w

n --_ P + H- + z,' (3-6)

where _ represents an antineutrino. With a further increase of energy, various

kinds of hyperons are created, one by one° The appearance of a new particle

occurs whenever the Fermi energies (inc[udlng the rest" .m_3_) oF the inhlc_[ and

the final particles become equal to the threshold energy for the creation of i'hc._"

parL_cular pGrticle.. The situatlon is _nalogous to the concept of communica.l.lng
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channels in nuclear physics where a channel for a certain nuclear reaction

becomes open when the incident particle acqulres an energy greater than or

equal to the threshold energy of the reaction. What was said above about the

reaction n _ P +e" +_ regarding the way the equilfbrium condition is reached

applies also to the reactions !nvoiv_ng mesons and hyperons. Some of the hyperon

productlon reactlons are:

2q¢--> P-v-y__- _n_-> 2.1\° , 0 "rt--> p+ --

__p--> 2_£_+ _A°-_ 2z. ° 2. A° -o, _ --' 2.- (s-7)

l\° -> ?.
We note immedlal'ely that in these reaclions strangeness is not conserved.

The time scales of processes like (3-7) are on the order of 10 -9 sec, which is long

compared to nuclear time scales but extremely short from the astronomical point

of view. Even though faster reactions exist, these are fast enough to ma!ntaln

equillbriumo ConsequenHy we can safely assume thai thermodynamic equilibrium

is maln_alned throughout°

The densi'_y at which the hyperon tran:forma:ions fake place is in the range

from 1015 to 1017 gm/cm 3 Far above nuclear denslty, and as will soon be quanti-

tatively shown, all the cons._;tuent baryons (nucleons and hyperons) and lept.ons

(exc!udlng neutrinos which e_cape from the star as soon as they are created) are

hlghly degenerate men after creatlon at the thre_ho!d energy,, Even when the

temperature is as high as 5 billion deg_ecs (lhe typical ':'emporeture used in cal-

culatlons in Chap,'or !!), the degeneracy is so high tha_" the co!d matter approxi-

mation is fully justified. (For instance at T =5 x 1.09 OK and p --- 1015gin/am 3
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the ratio of neutron Fermi energy to kT is about 400.) Ther_fore, in the preceding

and the following dlscussron of the equilibrium concentratlon of components at

total densities of order of or higher than nuclear density {,p _ 1013 gm/cm3), we

can assume that all the constituent particles are in their lowest energy states.

To make the discussion most general, the configuraHon in which all possible baryons,

mesons, and leptons are in equilibrium in the density range 1015 -1017 gm/cm 3 is

treated in the next section, and the results derived there are applied later to more

restricted cases. For reasons to become clear shortly (upper limit to the pressure -

Section !1_-5), it follows that hTgher density values than th!s are o_: no interest to

us. it should be added that ?T'" mesons do exlst at some of the highest densities

in our range=

bo Abundances of Various Components in a Highly Degenerate Baryon Gas

Let us consider an assembly of all kinds of sub-atomic particles, _.-he

criteria for the existence and absence of ihe respective partlcles_ and their

relative abundance at a g_ven total density at ze_'o temperature, in a density region

of a few orders of magnitude higher than nuclear density°

Some years ago we had a rather Hdy list of 30 so-called "elementary" par-

ticles. Today 60 or 70 more are added to our list. The first problem we face in

this section is to determine which of this pro_:uslon of parHc!es survive as the au-

thentic components of our baryon gas Zn our ronge o._ interes_'o First of all0POS_;rons,

photons_ neutrinos, posiHve m_ons, positive p'ons and K mesoils are all absent at

zero temperatures because no_'hlng prevents their decay and annihilation= On the
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other handt stability is established between hyperons, nucleons_ negative rnuons

and electrons; that is_ due to the complete degeneracy of baryons and electrons

at zero temperature and the Paull exclusbn principle, the decay products of

those particles find no unoccupied place in phase space° The stability of plons

is established through the high degeneracy of muons at very high densities. Even

though it seemshopeless to take into account all the newly discovered particles

properly_ the situation is not so bad. Fkst we no_e that most of the new particles

are isobars of familiar nucleons and hyperons in the original 30t and they are in

higher sta_es (i.e. heavier) than the originals. As a matter of fact, the final models

show that most of the newly discovered parHdes are in sta_es too h_gh to enter

our picture. Th_s_s because their effect becomes appreciable only for

p,_> 7 x 1016 gm/crn 3 while the present method breaks down before that, due to

the relaHvlstic llmi_- on pressure.

Let us consider the lowest states of baryons, N (939, ½+), A (1115, ½+),

>-_._1193_½+), and _ (1318, ½). Among all other sub-atomic particles, only the

isobars of nucleons in the flrs._ excited states_ denoted L_y n* and p*, possess

masses lower than or comparable with those of the lowest s_ate hyperons listed

above° The ground state baryons plus n* and p* turned out to be sufficient in

the present problem. Besides fhese, some leptons and mesons may also enter. In

conclusion, ii" has been decided that the inclusXon of the following 13 particles

is sufficient for the investigation of our baryon gas below a density of about
17o5 3

I0 gm/cm :

e-,g-, p, F. "n ,Z , qT O-8)
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Most other sub-atomic particles simply do not exist in our degenerate

baryon gas due to the fact that their stability is set up by weak interactions and

there is nothing to prevent their decay and annihilation as with pos;tronsl positive

muons, etcol which have already been mentioned. Some others are absent due to

the higher threshold density required for their appearance, as is also the case for

most of the excited baryons,

Our problem is now reduced to the actual determination of relative con-

centration of the 13 sub-atomic particles listed above, in (3-8,). (In the above

discussion, the words "elementary particles" were avo[ded_ and instead they were

called "sub-atomic" particles because some authors feel the former is not a suitable

expression°)

Due to the assumption of zero temperature, we first note that

(i) the energy of the system is minimum at equilibrium, - Besides the requirement

of minimum energy and conservation of energy_ we also note that the total baryon

number must be conserved in all processes responsible for the establishment of the

equilibrium_ and also that the star as a whole_ as _ve!_ as each of its local macro-

scopic regions, must be electrically neutral; name_yt

(ii) conservaHon of baryon nun_ber, and

(i,,'i) conservation of electric charge.

These three requirements are sufficient to determine the abundance of the

individual components uniquely as a _unction of total density. Mathematically_

these are written as

_o i°_ _'-l- _ _" )/_ (3=9)
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)

where ,_ denotes a sum over all baryons, and

2_.nO. z + - _ _l Z_ (3-i_)
4-

where the integration in the first is from zero to the Fermi momentum, the top of

the Ferml sea in momentum space; and E is the total energy density_ M the

mass, c the veloclty of light, p the momentum_ n the total baryon number

density, n_ the plan number density, meT the plan mass, ak =2T k + 1 is

the statlsfical weight and h is Plank's constant, n+ are the positively and

negQtlvely charged particle number densities and Z is the charge. An important

relation between number density and Fermi momentum is

p _/'6 _ _¢- I,,s
(3-12)

which is applicable for all fermlonso Applying this relation to all fermions, the

last two equations reduce to

3 3 3

(3-10')

(a-ll ,)

The constant on the right-hand slde of (3-10;) depends on the 'total baryon number

density. (Conservation of lepton numbe_- is not included in the fundamental con-

ditions because neutrinos escape from the star, and the number of leptons in a glven
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volume is not fully specified but is determlned by the total baryon number under

thermodynamic equil_brlum.)

Now our problem boils down to the determination of the minimum of

equation (3-9) together with the supplementary conditions (3-10') and (3,11')o

Such minimum value problems are well known in classica! mechanlcso By setting

equal to zero the quantity _ with respect to each Pk' the minimum state of

the system is achleved, w_re _ is defined as

- C _ _ c"P_- _ .%. C_

D3 ..,,_

3 3 3 3 ,,_

P/- ,/

The arbitrary constants a and {3 are eliminated through the differential

equations

- 0

where the subscript k

equations, e, IJ,P, P*, n, n*, A, 2, Z + Z-,.-_Z"

(3-14)

runs through all particles appearing in the origlnai three

and .___o The results are:
O

(a) for positively charged baryons k = Pr P* and £+,

(_,kc +p_ (%,,.c_-l_t.,i)- (",_c-+ e_.,

(b) for negatively charged baryons k = £- and _ -, I/2_

<%c -_-_ (n..,,.c"+,..,.,.
(c) for neutrai baryons k = n5 h ° Zo, and _" o,

12 __+ _- _t_- • o. I/z.

(3-15a)

(3-15b)

(3-15c)
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(d) as the relation between leptons and mesons,

At lower densities all particles whose threshold densities are higher than the

actual density are absent and, therefore, their number density is slmp!y zero.

For such particles cJs the equation n_ =0 replaces one of the equations in (3-15a)-

(3-15d)o The relative concentration of each component present is determined

uniquely by solving equations (3-10% (3-11') and (3-15a) through (3-15d) simul-

taneously, As we go from lower to higher densities we meet the phase transition

from phase of lower densities (fewer particles) to that of higher densities (a larger

nur,_ber of particles). This problem of concentration Gs a function of total density

is Jnvestlgated quantltatlvely in the next sub-sectlon.

c. Number _nslties ai'Different Phases

(i) P(oion-e[ectron ._hase - This corresponds to the region of the partial

density of the dectron-proton gas beZow -,, 10 7 gm/cm 3, where the sum of proton

and electron threshold energies is less than neutron rest mass, and the transformation

such as n --+ P + e- + _ eliminatas the exlstence of neutrons and all other

partldes except protons and electrons.

to

In this cases our equations reduce simply

ne = np p/H

where p is the total matter density and H is the proton mass, The first

(3-16)

equality relatlon is just (3-11)o The condition (3-10) was used to obtain the last

equallty relation°
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(il) Neutron Phase - This corresponds to the range 1012<_8 x 10 TM

gm/cm 3 where the sum of the proton and electron threshold energies is larger

than the neutron rest mass but where the electron threshold energy is lower than

In this case equations (3-10'), (3-11'), and (3-14) reduce to
the rouen rest mass. -3

with C_ : ( M_- Hp-)//me =/, Fo' ; 2'= _zcr_ e/M

"3 (3-18)3
and _0-- _ _C/_k%_ -- _/_e ,

+n =n (total baryon number density) = p/He (3-19)
nn p

_e is the compton wave leng'-ho Once the neutron number density nn is

specified, the concentra_..'on of protons np, that of electrons ne, the total baryon

number density n, and '_he total matter density p are found from above.

(iii) Nucleon-rouen-electron Phase - We noted in Section l!l-2a that

when the electron Fermi energy reaches abou_ 106 Mev, negative mu-mesons are

created through reacHon (3-6)o For densities highe: than this but below the

threshold density of the first hyperon appearance, neutrons_ protons, negative

muor.,s and electrons ex_s? in equilibrium,, The equ,!ibrlum abundance of eQch

of(MpCthe _ _.constituent--I- P[;_ I/'z.particles_ =("M _-is caiculated_lC_"-{" P,mz')fromI/'z_ (" _ +,,_¢_- _C_- )//'2.

z I/z
eC 2-')

3

which are deduced from (3-11'), (3-15a) end (3-15d)o

(3-20)
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To a first approximation, (Pe 2 + me2 c 2) ½ ~ Pe since electrons are already

highly relativistic (relativistic parameter x = PF/me c ,,- 6 near p ~ 1015

gm/cm3)_ and the second of the above equations leads us to

[1- ( ;
where A 1_ = (3'Tl "2 _p3)-lp and _p = "h/m F ct the muon compton wave length.

In this region the muon numbers are still sufficiently sma!! (for instance at

"" 1015 gm/cm 3, log nts ~ 36°4, while log nn _ 38_8r log np ~ log ne

and the number densities of protons and electrons are found in terms of neutron

(3-2])

= 37=1)

number densities from (3-17). Then equations (3--17), (3-19) and (3-21) completely

determine np, ne, np, n, and j_ as a function of nn .

it may be noted in (3-21) that when ne < AI_ no muons exist and therefore

AH is the threshold electron number density for creation of H'-mesons_ This corres-

ponds to a total matter density of about 8 x 1014 gm/cm 3,

(iv) Hyperon Phase - In the range of density from about 1015 gm/cm 3

to 1017 gm/cm 3, the hyperons listed in (3--8) begin to appear and rapidly increase

in number Hth an increase in density. In lhis phase all equa?ions in (3-15a) -

(3-15d) c_re valid except those where plon terms are ,_resenfo These equaffons to-

gether with the condition of conservation of e!ec;-ric charge and baryon density

lead us to

E -
yo

as the equilibrium equaHons_

F_ 'Tt -- ,T___ + ql e. + qt l_ (3-22)y-_ y-
Here, E; k _" (Mk 2 c2 + Pk2) -, n is the number
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density and the subscripts Y+, Y-, yO denote positive, negative, and neutral

(3-23)

ak = 2I k + I is the statistical weight and Ik is the spin of the particle k.

_Tk = 3/'2 for nucleon isobars n* and p* and their ak = 4, but for all o_'i_er par-

tides in this phase a = 2.

An argument similar t.o that for the rouen phase implies that the Ak° are

+
the threshold neutron number densities, the A k are the threshoid proton number

densities and A--- are the ;'hroshold Z- hyperon number densities for the

creation o,_ the particle k (or of --._" in the last ca:e)o

In (3-23) the numbe, r_ of positively charged particles have been expressed

in terms of proton numbers, dmt of the negatively charged particles _- in

terms of Y', and neutral particles in terms of neutron numbers. To obtain all the

abundances in terms of neu;'ron number densities, no, np and nZ- must be related
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to nn. Such relations have been provided by those equations of (3-22) which

were not used in the derivation of (3-23). This problem has been solved graphi-

cally and the results are plotted in Figures 19 and 20: in the former, electron

and proton number densities_ and in the latter_ on an enlarged scale the number

densities of e'_ p_'IT- and _-" have been plotted against neutron number

densltles_ in which the whole range of the hyperon phase has been covered.

Equations (3-21), (3-23)_ phss Figures 19 and 20 provide means for determining

the abundances of all the constituent particles once the neutron number density

n n i_ specifled_ Then equation (3-10) gives us the total baryon number density

and the relation

p = Z M kn k, (3-24)
k

the total matter density. Later it will become clear that it _s most convenient to

chose nn as a free p_rcmeter _nstead of p, in this reglon.

The abundance oF the various part;cles in the hyperon phase has been

calculated in the manner described above and is shown in Figure 21. For p_lO 15

gm/cm 3 the total ba.ryon and neutron numbcrs prec;-_cally coincide; for p>. 3 x 1015

gm/cm 3 the rapid rise in the number of other baryons depresses the neutron numbers

considerably from the curve of total baryon numbers. By _'he time the density in-

creases to about 5 x 10 !6 gm/cm 3 the conccn÷rafions of all the baryons a:'e abou._

1039_ 1040 -3cm and they are all of the same order of magnitude. The electron

and _- number densities exhibff a sudden dip a little above p = 1015 gm/cm3_

where the _ - hyperon appears, nF and ne become constant at around p =1017
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gm/cm 3 due to the appearance of T_- mesons, as will be discussed in the next

sub-sectlon. The hyperon threshold density Po (the density where a particular

hyperon of question appears), total baryon number density nt and the neutron

number densffy at each threshold point nn are listed in the table below. The

particles are arranged in the order of appearance with an increase of density.

tn is a relativistic parameter defined as tn --4 sinh "1 (PFn/Mn c) where PFn

is the Fermi momentum of neutrons which is related to neutron number density

1/3
as PFn = (3"/'f2) _h nn in a relativistic case. M n is the proton mass.

log 11.

log nn

tn

ly- z- A

!4,39i5,o515o28
'38.6 i 8o83i39,05

38.671 38°82 38°98

!.93 2,15i 2_.41
I

n _

5_,23

39°05

i38o98

!2.41
I

i yo
I

15,84

139 5o
139.27

2°856

---I_ p.

16.01 16010

39°75 13,9.83
J

39.34 39.37

2.98 3°0?

' 7_..+ i-o _--

16:38 116.45 117.21

'$9°46 39_57 140:04

3o421 3.50 4.37

It may be worthwhile to note that the order in which the particles appear

is not in the order o_: increasing masses. For instancer 7,.- is much heavier than

A° but _- begins to appear at lower dens_tles than A°, The reason is that the

;_- hyperons have to neutra!ize the positive charge of the protons whose con-

centrat!on increases with increasing nn (as seen in Figure 21)_ and starting from

a certain point, the production of _'- is energetically more economical _han that

of one new proton ar.d two new electrons° The same argument also accounts for

the appearance of _ hyperons earlier than _'+ hyperons which are much

l ighter_
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The results are also summarized in Table 7 where the total baryon number

denslty n = Y nk _ the number density nl: and the relativistic parameter tk of

each particle k are tabulated for seven typical density values in the hyperon

phase (in the range of 1015 gm/cm3 _ _ 1017 gm/cm3). These equations were

evaluated for each of the different particles by successively letting k equal nt

pl e_ Z, etc., in the previous equations. This table also shows the way various

sub-atomic particles come into existence in succession with an increase in density.

We note that t e of electrons is much higher than that of other particles. Th_s is

because electrons are already extremely relativistic in this region. The table

shows also that all the heavy particles approach the relativistic region (note that

PF _ Mc when t is around 3 to 4) when the density reaches about 1017 gm/cm3°

(v) Plan Phase - When the total matter density exceeds 1o4 x 10 t7

gm/cm°r it becomes more economlcai energetically if electrons or p" are con-

verted to _-o This corresponds to She case where the fhteshold energy of the

electrons and negative muons exceeds the rest mass of the negative pions, in this

case all the equations in (3-15a) through (3-15d) are va.Jido After this polnt is

reached the number densi_'ies of electrons and I_---mesons stay constant with a

further increase in total density at

1037 -3 (3_2,X 3)-1ne = 1.2 x cm : -,"

=3.36 x 1036 -3 c "3 (m,.r2 2 3,/2/.._3 (3-25)n cm = - m )

This is because all the excess electrons and p- above fhe threshold value are

converted to _" in a higher density region. The _- number der_sity increases
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matter density, respecfively,,in c,g,s, units,

ioa ,) _,1 5°05 J 15.30
- J

!38,83 90o7

v

16_07 16,36 17002

40°09 40.7439°80
39°35 39051

2.60

I °40

38°78

36.80
35o42

38_82

38.61

39.92

38°99 ' "3,9_23

36_79 36°78

!35,,32 35,,29
39.97 39.20

38..82 "3%13 -39°74

38_91 39...12 3"_.43 40,04
37,38- 38_i9 '38,8i" ""39.6_

37.59 38,58 39.50

2_94

2.11

24°36
" 1.45

1.42 1.78

1 :,09 1°58

1°58

0°59

- ' 38_78

I

3o096 i 3_42
i

2,43,_ 2_86

24,,32 24_31
1;35 ' 'I_32

1.986' 2.38

't o3341 2,,29
1,8-34' 2.29

1,084 l °72
i

0_.622 1°32

- I i]43

1o09

39,71

37o06

36.48

"39.7i

39.75

39°29
'39..39

' "i

4°36 l

3.86 l

25o163o04 .....I
3.52
3,,44

3°44

3..,05

2_54

2.84

2o41

2°35

}
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so rapidly with the increase, of total energy after the threshold point, that it

soon becomes of the order of densities of the other members of the mixtures.

d. Summary

The above results show that the critical density at which hyperons appear

is about three times as high as the normal nuclear density.

The general resuJts for the whole region are shown in Figure 22° In order

to avoid over-crowding the hyperons in this graph have been grouped together in

a stripe. The rise of the numbers of these elements is so rapid (almost vertical

iines) right after the thresholds have been crossed that the e{:fect of non-degeneracy

can be safely negJected in the later calculations. The neutron Fermi energy is

about 510 Mev when nn ,-, 6 x 1038 cm'3o All through the region of the hyperon

phase_ the electron number densities are roughly two to three orders of magnitude

lower and the is" meson number densities are about three to {:our orders of magni-

tude lower than the neui'ron number densities.

Similar work is found in reference 13o The general agreement is saris-

_:actory, although there are minor small discrepancies in some of the numerical

_'esuIts o

!!_3 EQUAT!ON OF STATE FOR A DEGENERATE Zr?EAL GAS

We note |,_at a_l the particles appear-'.'ng _n the density regions below

about 1017 gm/cm 3 are t:erm_gns, Even at higl_er densities the appearance of any

bosons except neg¢_?ive plans would be very untlk_-[y unless "i'he total densities
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were to rise to unrealistically high values. Reallzability in nature of even the

plon phase is rather questionable. In our problem of neutron stars the upper limit

set on possible values of pressure gives the upper limit of the density range in

which the equaffon of state of hyperon gases is properly applicable. As is demon-

strated later, this limit is reached below the threshold for the appearance of pions.

In the density and temperature regions of interest (1012< p < 1017gm/cm3

T < 5 x 109 OK) all particles present _n the mixtures are in a highly degenerate

state. Therefore, the most general expression of the equation of state for a de-.

generate gas of any fermions which apply to both the non-relativlstlc and relati-

vistic regions is extremely desirable. Firsb in ,h_s section, such an equGHon for

an ideal gas (that is_ without interaction forces) will be derived. In the next

section, the complete expressions with interaction forces will be considered.

kinetic

Number density ns/energy density I_,Gnd pressure P for fermlons are expressed
(7)

as

V ( 2s)

I_E. o

V o

where E = ( P_c=q-_'7- C i+-_I/a- <_ C. 2 {3-27)

and Z (E) dE =the number o_ quantum states between E and E + dE_

Generally, it is more convenient to express this in momenI'um space as

Z(P) dP- 8 _V p2 dP = number of quantum s_'ates wh'h momentum be_wecn
h3

P and P + d P.
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E is the energy, P the momentum_ m the mass of the particle, a = IJ/kT

and _= kT, wher_ !J is the chemical potential. In complete degeneracy, 1 +exp

(a + E/"E) =1 and all _'he states are filled up to Fermi energy EF and termlnated

there. in that case the above equations reduce to
o

n = _'TF/)q_L3C3 _-Osinh 2gcoshg dO

p _

,rft_-c8_
,E'k=_p Josinh g cosh g (cosh g-1)dg (3-28)_

yqT _¢C _ (̀ 9°
_3 ")o sinh4 g dg

wlth slnh g __ P,/mc, sh_.h gO =-PF/m c where PF

momentum, E = mc 2 (cosh g - 1)
i

is 'ihe Fermi "_'hreshoid

(3-29)

After the integrations are carried out, they are expressed in parametric form as:

n -_

E=

_ _3 C _ s_h3 _
a 3 +

is the energy density includlng rest mass

(sinht-t) K

(3-30a)

(3-30b)

where

p ._

_z 3

K = m4 c5/(32I"/'2_ 3) is a constan_.o

(3-30c)

(3131)

The new parameter t is defined as

t = 4g o = 4slnh "l(PF/mc) (3-32)

The last five equat!ons are ex._remety important _n our pToblems and will be

referred to frequen_lyo
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i think it worthwhile to explain how the above equationsare applled to

equatlonsof state which are to beusedin evaluatlng ordinary hydrostatic

equations(without general relativity) as well asto thosecorrespondingto the

general relaHvistic equations.

In the former (without general relativity), the densiHesappearing in the

stellar structureequationsareordinary matterdensities, Fora pure neutron gas,

the density p is just number density n times neutron mass M n, and (3-30a)

plus this relation gives us the expression for p in terms of t:

3
8_ M_6 _

p= 3 -k _ (s_nh3±+_Mn

This plus (3-30c) then represent the parametric form o_: the equatlon of

state for a pure neutron gas without general relativity°

If we are dealing wi_h a gas consisting of non-degenerate nuclei (AzZ)

and completely ionized highly degenerate electrons, then the number density of

electrons and total matter density are related to each o_her through the flrst

equaHon in (3-3) and using _'he notaHon used in (3-3), the denslty can be ex-

pressed in parametric form .;-hrough (3-30a) as

(3-33)

This plus (3-30c) give us the equation of s:ate for a degenerate electron

gas. We note that the paranletric expresslon of the equaHon el: state for

a degenerate elec_._on gas is identified with tke equation of state used by

p = _H TM 4'_l_c3- sinh 3 JC (3-34)

3



Chandrasekhar for white dwarfs (p° 415) of reference 7 if the parameter t

here and x there are related to each other through

t = 4sinh -1 x

or x = PF / mc

An equation of state in the form of (3-30c) plus (3-34) is valid in the outer

layers of neutron stars of sufficiently low densi_'y where electron pressure is

dominant and where the general relativistic effect is unimportant.

In ._he greater part of neutron cores or hyperon cores, as we noted _n

Chapter I, the general relafivisHc expression of _'he s_'ructure equations (1-8)

and (1-9) must be used. In these equations, the equaHons oF state appear in

a form containing _ (P) (energy density) instead of _a(p) (matter density). In

this case, equations (3-30b) and (3-30c) constitute a parametric form of the

equation of state for an ideal gas°

In this research the last form of the equation of state (3-30b) and

(3-30c) for the partial energy density and the partial pressure of all the con-

stituent particles in mix_urgs is used, for e!ec"rons as well as for other heavier

particles, because in the tow density lim_b (3-30b) _n all cases reduces to

(3-34) for electrons and _o (°-33) for baryons.
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(3-35)

(3-36)

II!-4 EQUA,, ,O_',_ OF STATE. FOR A DEGENERATE REAL GAS

ao General Discussion

The equations derived in the previous section are valid if interaction

between particles is neg!igible. For instance, from the work in reference 11(b),
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we conclude that all the correction terms to the equation of state of a Fermi

gas of non-lnteracting electrons are negligible in the density range of interest

in this research ( p _ 109 gm/cm_ and tile formulae derived in the previous

section is perfectly valid for electrons.

The situation is quite different for baryons. This is because the normal

nuclear densities are around 3 x 1014 gm/cm3t while the densities we encounter

in typical neutron star problems are about 1014 to 1016 gm/cm 3 . As the

density of a neutron gas increases above about 1012 gm/cm 3 the attractive

nucleon-nucleon interaction potential begins to become effective and depresses

the total energy and pressure below the values of ideal Fermi gases. It is well

known that the nuclear potential in effect becomes strongly repulsive in the ex-

tremely high density limit to prevent collapse (for p>1015 gm/cm3)o The exact

details of the behavior of nuclear potentials in this range (higher than nuclear

densities) are not yet well known_ However1 various models of nuclear potentials

in different density regions have recently been constructed by different

authors(!lb), (5]), (52),(53) Some of these models wh!ch are par'?icularly inter-

esting in the problem of neu._ron stars are discussed in the next sub-sections b to f.

Before that, a brlef outline of how the equal._on of state is to be mod..'fied

in the presence of such interaction forces will be cons_deredo In generab if the

interna! energy |s expressed by U and the matter density by p t the corresponding

multiplying it by

pressure is obtained by taking i'he derivative of U with respect to p and by/

p/V where V is the total volume of the system cmd the whole expression is
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evaluated at zero temperature, namely,

_P T=O

In the derivation of parametric forms of the equation of state in the previous

sectlont the energy term consists of kinetic energy and rest mass energyt and

the pressure is that due to the kinetic energy, Therefore_ the equaHon of state

for a real gas is obtained by adding the addltlonal pressure due to the interaction

potential expressed by equaHon (3-37) to the pressure due to kinetic energy ex-

pressed by (3-30c), while the interaction potential energy density is simply added

to (3-30b) to obtain the total energy density° Then, the two equations for P

and _ represent a parametric form of the equation of state for a degenerate

real gas. In this case, U in (3-3_ stands for the interaction potential.

At the present stage, the behavior of nuclear forces at high particle

speeds is not well known. These forces may be dependent not only on mutua_

distances but on particle veJocities and spins as welb or they may involve

tensor faces. A serious problem seems to be that many fl_eories which appear

to work so successfuJly in low energy regions fail very badly in high energy

r%eions, although some successful attempts have been made recently._ such as a

work by Serber (53) Regarding the interaction forces between hyperons, the

situation is even worse. As has been sta._ad in re_rence 54, "the difficulty to

explain even the most predominant features of h;gh-energy col!is[ons remains

as great' as six_'een years ago_" Faced with this fact one may feel that the p_oblem

must be abandoned until tuft.her progress is m_de in the fundamen_'al theory.
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Howevert it is still thought worthwhile to try to construct models as realisti-

cally as possible. The results of this research seem to indicate that such an

effort has not been in vain.

Qualitatively_ we expect that with an increase of denslty_ the inter-

action potential first decreases_ reaching a minimum when the dls_ance between

particles is of the order of the pion compton wave length_ and thenr for

p _ 1015 gm/cm3r it begins to increase rapidly. The introduction of repulsive

forces between baryons at close range leads to increased pressure which increases

the mass of the configuration. Thereforet the maximum mass limit is expected to

be larger if proper interaction forces ai'e taken into account.

Since the nucleon-nucleon potential is more easily investigated than the

more general problem of interactions between baryons_ and since it appears that

the interactions between hyperons are the same strong interactions which bring

the nuclear forces within a nucleus into play_ poten:ia!s which are constructed

to fit nucleon-nucleon experimental data are used _n this research as the average

potential fieids which apply to all baryons°

b_ Skyrme Equation of Sta_e (9_10)

A simple three-body effective nuclear po_en';'_al has been constructed by

Skyrme which represents quite well many features of the more complicated many

body approach° In this model1 the total energy density including rest energy is

expressed as

5/3 " 8/3. 2,f. = c2 p + 7.98 x 109 p + 9.79 x 10 -0 p 1.381 x lO5p (3-38a)



p is the ordinary matter density in gm/cm 3 and _, is expressed in
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where

ergs/cm 3.

The internal energy (without rest mass) of the system of N nucleons in

a volume (N/6o025) x 1023 p is then given by

U = [ 7.98 x 109 102/3 + 9.79 x 10-61o5/3_1 .381 x 10510] N x 1023/6.025

From (3-37) and (3-38b) the pressure is

2
P =5.32 x 109 105/3+ 1.632 x 10-5 p8/3 -1.381 x 105 p .

P is in dynes/cm 2. The first term represents the kinetic energy contrlbution of

the neutrons and the other two terms reppresent the most important contributors

to Skyrmets mean e[_ecfive potential

The above derivations are based on the non-relativlstic appxoximaHon.

Equations (3-38a) plus (3-38c) then represent the parametric form of the equation

of state for a real degenerate neutron gas in a non-relativlstlc region. The re-

lativls.fic Skyrme equation of state is ebtaincd by a s_mple modification, it is

summarized below

(3-38b)

(3-38c)

t •

_(t) = K(sinh t - t + 23°9 sinh 8 _ - 10ol sinh ° )

. _6t
P(t) =K[ (sinh t - 8 slnh_2 + 3t)/3 + 39,9 slnh 8t- 10ol s,nn 7...!

where K, = m4 c5/32 =2._3

-1
t = s;nn"' (PJmc); PF = (3r'2)1/3,h n 1/3

c_ Saakyan's Equation of State for a Real Baryon G_s (14)

(3-3 ° )

Because of the scant know!edge we have of ;'he physics of this problem_

Ambartsumyan and Saakyan suggested (14) a somewhat, arbitrary slmple form of
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potential

2
V(n)=3.2x10 -83n -6o4x10 -5 (3-40)

and assumed that each baryon experiences this same potential, where n is the

total baryon number density. The formula is chosen so that at n>lO 40 cm-3

V(n) exceeds the kinetic energy of the particEes including the rest energy, and

at lower densities it coincides with tile depth of the potential well of ordinary

nuclear matter° Thls potential form is constructed to provide a qualitative fit

to the available dato_

where

Their composlte equation of state is:

where

(3-41)

4" "YL,I_"Y_"B" C _ (3-42)

Ko= c'/ C3p -rr .K )
The extra factor [ ak(Mk,/Mn)4/2! is the result of expressing the constant K

of particie k in terms of K n of neutrons, k runs over all _l_ermions present

except neutrons. M n =neutron mass, and Mk= mass of particle ko

d. Salpeter's Equation of S_a_e(11b)

Saipeter investigated the possib_e forms of the equation of state for a

real neutron gas through a semi-empirlcal approach_( 1 l b)

At/3a parameter ro defined by R = ro is used, where

Instead of density _),

R is the radius of a

nucleus of mass number A. ro is expressed in fermis (10 -13 cm) and in the

case of neutron gases is related _o ordinary maffer density _) through



175

= 3.96 ro"3 x 1014 gm/cm 3 (3-43)

He found the energy per particle in a low density region in analytical

form by using the ordinary phase shift approximation and the effective range

theory_ and concluded that there is no bound state in this region.

In an intermedicte range around normal nuclear densityt the total energy

per nucleon E is first expressed as a function of ro _ z ( = Z/A), and three

constants which are evaluated by fitting them against experimental information

on "ordinary" complex nuclei. For this purpose a simple form of seml-empirlcal

mass formula is used:

- E(z, A) =a 1 - a 2 (1-2z} 2 +a 3 A -1/3 + a4 222 A 2/3 (3-44)

where al_ a2t a 3, and a 4 are constants for b|ndingr symmetry_ surface and

Coulomb energy terms respectively° Because of the uncertainty in the symmetry

energy coefficient a2r four possible values of a2 are used. The analytlca_ ex-

pression for energy per parHcle _or a 2 =29 Mev for ordin,_ry nuclear matter

( x = ½) and for the pure neutron configuration (z =0) are

E(ro, z = ½)=ro2[-00763+ 1o065 ro"1 + O0&,2" ro2+0o459 r0-3_10712 ro1.21] 29. 0 Mev

and E(ro, z:O) = %-2[ 00157+ 0.710 ro 1+0,321 ro2+00697 ro3-10368 ro1=21;2900 Mev

(3-45)

Pressure is then obtained from

P(ro) =- (4: to2) -1 d E(ro_/d r (3-46)
0

For the lowest value of a2(22 Mev) the neutrons are bound° For a 2 -26 Mev_ the

energy never becomes negative but i-here is a local minimum near ro --2 fermls.

For the rest of the models (a 2 =29 and 34 Mev) the neutron matter is not bound.
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The model of a 2 = 34 Mev has the highest values of pressure and Sa!peter con-

cluded that this case is the most probable.

In the high density region he assumed a static repulsive core of radius

0.45 ,r'ermis and appiled the "cell-method" to treat this region. According to

this method_ the potential energy becomes infinite for ro =0.25 fermls.

e. Equation of State of Wheelert Harrison and Wakano (8_60)

Their equaHon o_ sta_e is plotted in Figure 10-1 of reference 60. At the

lowest density llmlt_ the matter consists of solid Fe 56 of dens.:ty 7°8 gm/cm3;

therefore its compressibility is very smalb and the P/p vs. p curve is a!most

vertical until the iron atoms are pressure ionized. Then follows the region of

atomic physics° The equation of state corresponding to this region was obtained

by correcting the Fermi-Thomas atom model {:or pressure effects according to the

theory of Feynrnan, Metropolis and Teller° V_hen the pressure ionization is

comple._ed pressure increcses first as P 5/3 and then_ ,%r p _,, 107 gm/cm 3, as

p4/3° The equation of s_'ate in this region has been cons.+ructed by Chandrasekhar

(Chapter iV-2a). In the region 107 < p < 1011gm/cm3 electrons are captured

122
and the s'_able nuclei shift From iron to Y in ._he manner described in Chap_'er

ll-3b. For p _ 1012 gm,/cm 3 the ma_.n compos_Hon is neui'rons. Wheeler et al

did not make a detailed onaiysls of the cornplex._i'y encountered a{:ter the nuclear

density has been reached° They used two dlf_:eren_ approaches in the high

density regions: (1) the simple equation of state of an ideal Fermi gas with 1/9

electrons and protons and 8/9 neutronst and (2) the hard cora approximation_ that is_
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it wasassumedthat nucleons act upon each other wlth a hard core effective

potential at a distance of about 0.5 fermis.

f. Levlnger-Simmons Equation of State

One of the most interesting quantitatlve works on the neutron-neutron

potential in the intermediate density range (near the normal nuclear density)

has been published by Levlnger and Simmons. (52) Since thelr work covers the

most important region of density for typical neut._on star models, the potentials

suggested by them are extensively used in this research. In the following thelr

potentials will be introduced first and then equations of sta._e will be constructed

using these same po_entlals.

Instead of using matter density directly, the Fermi wave nurrb er kf is

used as the parameter representing density, kf is related to Fermi momentum

through pf = h kf. At this poinb it will be convenient to glve relations between

different parameters used by different authors to expi'ess density. According to

the definition R - ro A 1/3 for neutrons A =1 and ro is the radius of the

average volume occupied by one neutron. Let us denote this volume by v, and

the number density of neutrons by n. Noting that Fermi momentum is related to

number denslty by Pf =,'11"kf =(3 _2)1/3.ff nl/3 the relations between neutron

number density n, the average separation ro and the Fermi wave number kf are
f -!I

V _ o,,] 3 "IT'_ (3-47)

Thls leads us to a simple relation

I, ? 12./ (3-48)
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n furthert we obtain (3-43) as a relation betweenOn applying the relation p =M n

p and ro. From (3-43)and (3-48)the relation between p and kf is

p = 5.64 x 1.013 kf 3 (3-49)

where kf is expressed in f-1 (f means fermisl 10 "13 cm.)

These relations ore exl'remely useful when the results of the work of

different authors are competed.

In the Levlnger-Simmons potentlals the following assumpHons are made;

the neutron-neutron potential is well-behaved and velocity dependent, charge

independence is valid, perturbation theory is applicable and the second-order

energy _n the perturbation expanslon _s negllgible in the intermediate density

region. The last statement is verified in the a_rementloned reference° By the

e.ssumptlon of charge independence the result for the neutron-neutron potentlal

can be fitted to the experimentally determined ones for proton-proton phase sb.ifts.

This was done by Levinger and Simmons but they neglected to correct for Coulomb

effects, The density region in which 0.5 < kf < 2f -1 has been covered, Two

different velocity-dependent potentials have been adiusted to fit the obse_ed

nucleon-nucleon 1S and 1D phase shifts. Ve!oc,:'ty dependence is assumed for

two reasons: (1) it is necessary to fit the observed 1S phase shi{:ts and (2) it

prevents the collapse which is farnillar in the nuclear ma'tter problem°

Three potential forms are used_ with characterls._cs as descrlbed above.

They are convenieni'ly called Vc(, v_ t and vy I defined as
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(;)

OPEP =-

(3-5o)

(3-51)

"A

= 5 exp (-306 r)

(3-52)

vc_ fits the accepted low-energy parameters and g|ves 1S phase shlf_s in rough

agreement with experlmentcfl data but gives much too small values for 1D phase

]
shifts. For kf b > 2, the region of most interest to us, the D phase shifts s._art

to become important. Because of this, the potential v_ is not used in this research

although it is the simplest in form o'_ all three in that it has the shape of a simple

square well.

v'_ has four adius?abie parameters Vo, b, c, and _, and gives a satls-

IDfactory fit to fl_e 1S and phase shifts from 20 i'o 340 Mev. aPE P ;s the one

pion exchange potential vA'_ich becomes effective for r > 1.6 fo

vy gives a good f_,_ to 1S phase shifts and a "fair fit to 1D pha_e shifts.

This potenHal also gives a good fit at low energTes with effective range = 2.65 f

i iand scattering engtn =- 2306 f. The units used in (3-50) through (3-52) _re:

energies ;n Mev and _engths in ferm[s f° The three given above are examples

of non-local potentials, expanded in powers of p_ retaining terms only up to p2

and adiusted to the two-body experimental data up ;o 340 Mev (lab system). A
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roughguessasto the potential in (triplet) odd statesis madesuchthat the static terms

are weakly attractive in the odd states and the veloclty-dependent terms are the

same in all states. The tensor and spin-orbit forces are not included.

The first order energies are calculated in the following manner: The total

energy through first order E is

A

(3-53)

where Ho _s the kinetic terror treated as the unperturbed Hamiltonian, and _ is

the perturbation given in equations (3-50) through (3-52)° Levinger and Simr.,ons

2
used the non-relatNistic expression for the kinetic energy term Ho='P 7'2m and

obtained < 1_1 Ho !_, > = (3) N "h'2kf2 where N is total number of par.+icles.
" 2M

The perturbation term is expressed as a combTnation of four terms v o , Ve_

go_ and Uer representing the ordinary static, the exchange static, the ordinary

veloclty-dependent, and the exchange veioclty-dependent terms, respective!y. The

preceding quantities are determined by the following formulae:

I-v, ):>: - (
for v o,

__ ('r'6) I-V_,(/1-_("/I)_>: 4Jr:l-ire/.._z.) J'-J, (7/.,) (sin " 2,kr/2kr)r dr for Ve,

\ M4 ,/ J
for' _o of Vc{ and vfi 0 _o of v?- is obtaine_Lby i he same integral ir the term

- _. J2(r) is replaced by 2e(;). ue is determined by a similar integral in which

=4 3.
(r) in the last expression is replaced by _ (-r). tn the above,./L=vN -_ trr o N.

For a Serber forcer there are 1/Sth of N 2 pairs interacting in even (spin-singlet)

states. The four potential terms for a Serber force are then



/o:-cvo/_)_7]J,c'_)'_*t_",o,v<<,v_,v,,
v,:-e_/_-n-%::r,o0_,Csz_+-'zJ_,V,_,o,v_,,v_,iv

We- (;_t3.o_r)<_:'/M)_(fJ_c,_),z__ ,o," "= vet vr_
# ,

,.,ho,og(_):(-3o+3{,07 u9

(.j
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(3-55)

0

sin y

and @e for a potential ?y are obtained by replacing - _ _T2(r) in the _ast

two expressions above by 2co(r).

The ordlnary integral of the static term v° and the ordinary integral of the

veloclty-dependent term (2,)o are evaluated from the first and the third equations

above for the each of the three potenHal_i ^ '_ _l". . V V ,>

Static v ° (Mev)

+.do,>:_ ,Mo,,_I

They are given below.

Po'_entlalvdiPoten'dalvpiPotentlalvi,

-4.121, i3 i - 3.0ikf3 1 -4.02kf ':i

,I 0,045 k_5 i 0.28 kf 5o._4l,f5 I ' I

(3-56)

(kf in f-l)

No such simple expressions are available for exchange integral terms. However_

analytical forms are deduced for the exchange in,_egral of the static term Ve of

the potential

V e =-

f2 (y) _"

Vc( and v13 in the form:

(v °/2 _ f2(2 kf b} where

4 cos y/y3 + 4 sin y/y3 + cos y/y + Si (y)* - 3/y - 4/y 3

(3-57)

.,,%

Similarly_ the exchange intesrals of the velochy dependent term of v_

are expressed ana!ytlcally as

and
A

*See reference 55



e = ('h,,_kf2/2ffM)f4(2k f c)

f4(y) =72,/y5 + 12/y3_ 72cosy/y5 72 sin y/y4 + 24 cosy/y3 +3 sin y/y2
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(3-58a)

and similarly for v_/, as

e =(3_ 21 1_2/417 M)f 5 (2 kf,/_)

,f5(y)='_'y -tan-'l Y+( )( (1 +½y-2) In (1 +y2) _ _..,_

(3-58b)

The above results show that all four terms Vo ¢_o' v e, and _e are functions of kf

only but for v e and _ue the dependence on kf is not simple at all. In reference

52 numerlcal values of

different values of kf

v e and cu e for three potential models vd vp and v_- for

in their range are tabulated (Table IV of reference 52). To

take care of different exchange mixtures each term of v o, _o, Ve and oJ is
e

multiplied by an appropriate coefficient. These are defined by

Vm

c 1 =1 +3(V-/V +) = 1.3 where _--_- = 0.1 is the ratio of static forces in odd and
even states,

c2:1 + 3 (?L-/,_¢) =4where ,_ -,/A. +=1,

c1'= 1 - 3(V - ,/V _=0o7 where V-/V +=:0.1, and (3-59)

c 2' =1 - 3&-/ft.+=- 2 where &-/2_,+=1 for v o, er_ol v and ¢_e respectively.

The energy per nucleon in the final form is then

!_ E 3(_2kf2/2M)+ClVo+C2_o+CllVe+C2.

fi= %

12°5kf 2- akf 3+ [_ kf 5+ c l've (kf)+ c2: _e (kf)

(3-60)

where a and p are constants to be determined from c 1

and v° and ¢_o given in (3-56)°

The first term, the kinetic energy term, is proportional to

and c 2 given above

kf 2 (non-relativlstic);
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the second term, the ordinary integral of the static term, is proportional to kf3;

the third term, the ordinary integral of the velocity-dependent term, is proportio-

nal to kf5; while the last two terms are more complicated. As the table in (3-56)

shows the static term v o is negative, representing the attractive force, while

the velocity dependent term _o is positive, and represents a repulsive force for

large kf, namely, for high density.

For very small kf, the kinetic energy is dominant and all the rest, comlng

from a nucleon-nucleon interaction, are negllglble. With an increase of kf, at

first the second term depresses the energy due to the atiract'ive ,%rce but gradually,

with a further increase of kf, the third t_rm takes dominance over the second and

energy goes above the value for a non-lnteracting Fermi gas_ The exchange terms

are equal in magnitude to the corresponding ordinary integrals at low density, that

is, v e _ v o and r._e._ CJo; but become negligible at higher densities, that

is, I v e I << Iv o I and ! cue !<< ! oJo ! as kf --- COo

v_lv_ and v.r as a _:unctlon of kf are tabulated in Table V of

reference 52. They agree w_'s'h each other up to kf _ 1 f-1 but Vc_ deviates

from the rest sharply for hlgher values of k{:. The general agreement between

v_ and v_.- is good for kf < 20 This shows that the shape independence is no

longer valid in "i'he hlgher density reoions. This is reasonoble because k = 2

corresponds to a density of obout 4 x 1014 gin/am 3, which is somewhat higher

than normal nuclear densities (-.' 3 x 1014 gin/am3). ThGt is, we are wlt'hin nuclear

force range and the exact shape of the potential should give a large effect.

Because of the poor fit of vc_ in the density region of interest, Vc_ is
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discarded, and v_, v T. and a combination of vp and v_ are used in this

research° From the above results (3-60), (3-56) and (3-57) through (3-58b),

with the help of Table IV of reference 52, (_ _ E/N, the energy per particle,

is computed. Energy density _ is then obtained through the relation

= E ,) (3-61)¢ n(whereE
n is the number per unit volume. The equation (3-37) for pressure is modlfled

in this case as

p = n 2 _E" (3--62)

It is desirable that the kinetic energy be expressed in a more general form which

applies to bolh relativistic and non-relafivisflc cases. Then the first term of

(3-60) is replaced by the more complete expressions given in the previous section

(!!i-3). The final expression of the equation of state for the Levinger-Simmons

potential is then represen;ed by

5 =1< (sinh t-'t)+'_l._-o_1t¢-_:3+ _'_r'kO; t7 b_- _9-L4)C"_ C' (orgs/cm 3) (3-63)

P:_ _K(sinh t-8 sinh_'P_)"k_'(-30_+'_,{_ _;_ C_ "_ Px (dynes//cm2)

where m is the mass of the partlc!e in question and m n is the neutron m_ss.

C isa conversion factor from Mev to cgs units

C = 1602! x 10-6 ergs./tv_ev

a=lo3al, _=4a 2 whore

al= 3.02, a 2 =0_045 for v_ in tvlov,

a 1 = 4.02, e 2 =0.28 for vy in Mev.
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mc . .t

kf and t are related through kf = --_-s.nn_, and n and kf through (3-47).

From the above information, pressure and energy dens;tres can be expressed as

a function of the parameter t alone and they constitute a complete expression

of the Lev_nger-Simmons equation of state which is used in this researcho

It is extremely tlme-consumlng to calculate Ve,_ e, gVe/_ n and

"_ r-,-'c,/'_ n analytically through the use of equations (3-57) and (3-58). Zn thls

research, instead, a graphical method has been used° Namely, v e and co e

tabulated in reference 52 have been plotted against kf as shown in Figure 23

and the slopes have been measured° The table listing a set of discrete values of Ve i

evi_ and _°_e thus obtained graphically has been used as a basis for
ee _n _n

interpolation in the region where kf _< 2 and for extrapolation for the region

kf > 20 That extrapola,'ion in this way for higher density regions is justified

can be seen by no_ing that the exchange terms v e and c,oe are negligible

compared with the ordinary terms v o and Cu'o for kf _>_2.

g. Results

The results are shown in Figure 24, where the total energy per nucleon

(including both kinetic and potential energies) is plotted against density. The

curves marked v_ and vt,, correspond to _he equation of state wi_h the two

different kinds of potential used in this section° In addition, the equctlons o_

state of Skyrme, Sa!peter and of non-lnterac_ing particles (kinetic term only) are

shown for the purpose of comparison. Fven the highest pressure (a 2 = 34 Mev in

Section lll-4d) _n Salpeter's models is considerably lower than that of all the
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other models but this is not surprlslng as can be seen by not!ng the large uncer-

tainties inherent in the seml-empirlcai approach used in Section 111-4d.

Among the two pot'entials Vp and V1, of Levlnger and Simmons, the

difference is small in the region of attractive forces but V 1, has a much stronger

repulslve effect in the higher density region. This is due malnly to the larger

value of the coefficient of the repulslve term1 _ or a 2 in (3-63') for Vy as

compared with those of v13 . With no nuclear forces all curves would coincide

with the ilne marked "non-ln_eracfing particles." The over-all effect of the

nuclear po'._ential in most of the region shown in Figure 24 is attractive, but the

graph indicates thct near p 1015 gm/cm 3~ repulsive terms are already becoming

dominant over the rest.

111-5 RELATIVISTIC LIMITATIONS ON THE EQUATION OF STATE

To exp(ain the behavior in high density regions, it has been mare or less

customary to use the approximation of an incompressible fluidt that is, a hard

core repulsive potential whlch goes to infinity abruptly at a hard core distance

(varying from about 0°2 to 0_5 fermls dependlng on models). Matter becomes in-

compressible and the pressure can become infinite at a flnite density in such

models.

In reality, the nucleon core is not ideally rlg'd and the inflnltely I_.rge

repulsive force actlng at a fixed dlstance may have to be replaced by a more

realistic model o_ the interaction_ such as the repu!sive terms of the interaction

potentials presented in the last section.
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However_it is also known that the theory of relativity prohibits the

pressure from going to infinity at a finlte density. The generally accepfed

limitation to the pressure imposed by the relativistic principles has been

_E (3-64)3

where P is the pressure and E, the energy denslty. The inequality sign carte-

sponds to a system of free non-interactlng particles with non-vanlshlng rest

masses and the equGlity slgn applies only to electromagnetic fields.

Using the notation of reference 56_ the derlvatlon of (3-64) by Landau

and Li_:sh;tz is summarized below:

The energy-momentum tensor for an assembly of non-lnteract!ng partlcles

has been shown to take the form (p. 89 of reference 56)

where
'_ tv_

In particular the diagonal space components are reduced to

is the mass densily.

0

That is_ T.. becomes negative for non-van_shlng masses and a par*icle velocily

v A less than the velocil'y of light, VJhen mA =0 or v A =c_ which corresFonds

to photons_ T i i is zero. There is no real solution for T I .=> 0, The space com-

ponents of the energy-momentum tensor of a macroscoplc body have been shown

(p. 93 of reference 56) to be

TIi =- _ + 3Po

Combining thls with the above inequality relal;ont we obtain (3-64). That is_ the
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pressure should never exceed 1/3 of the energy denslty for non-lnteracting par-

tlcles of finite masses and the pressure is equal to 1/3 _ for photons. We immediate-

ly notlce that above derivation does not prove that the same lhnilaHon should apply

to interactlng particles alsoo Zel 'dovlch (57) proposed that relation (3-64) may be

violated in the case of strongly interacting partlcles, and that a more rigld I imitation

which should apply to any system is

P (3-65)

This absolute limit is set by the fact that "the speed of sound must not

exceed the speed of light." The speed of sound is given by (58)

D2 = c 2 a P/_ _. (3-66)

where 0 is the speed of sound, c that of light, and P and _ are pressure and

energy density as before. If (3-64) is valid, then D,< C/vT_ but if P_ _, (3-66)

leads us to D < _ . Since no velocity should exceed the ve!oclty of light accor-

dlng to the theory of relatlvlty, the limitation P _ E should be an absolute one.

The possibility of the viotation of the condltion (3-6/,) arises, for instance,

for the case of a fermlon field interacting with a boson field. In general, the

Lagranglan which describes the fields in interact:on is the sum of the free field term

and the interaction term° If a splnor field 9/ interacts wlth the scalar boson field

through a direct coupllng term, the total Lag_angian (59) is given by:

where _n -.7. vJ" (- i'-V+_}rt)L/"- _( >tk _: _-q' ,,_'t • _/..'
= " -'# +a l-, ? /

, 1 z "_ f. (?/g ,...... - ( a:,, - y/,, )
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/"is an operator which can have any of the following forms:

G is the coupling constant for direct coupling, p is the inverse compton wave

length mc/'E" and m is the mass of the particle associated with the field.

The variation of _ with respect to the boson field _ leads us to the field

equation for _,

(_ +_,s)_ =- G_ p_ (3-67)

Then, _ /-'_ acts as a source term for the boson field , just as the current acts

as a source for an electromagnetic field in Maxweil_s equations. !f the source term

is independent of time, there exists solutions o;: (3-67) which are independent of

time in which case j_=- _ 2. In particular, for a poin._ charge at rest at the origin

the source term on the left is just of a delta function type and we are led to a simple

solution of a Yukawa potential type

¢ =g _/4 R../_ (3-68)

where g isa constant corresponding to the interaction charge° Such a potential

may represent the interaction of the fermion current with a vector meson field and

may well explain the repulsion between baryons in the ultrqhigh density regions.

The force between two charges under the potentlol (3-68) is

IFj_.I = - _ d @ =---._._ _'___:.(e A
o[/11_

the corresponding interaction energy per each pa.r is then
- _227/2

(3-70)

19-
If we note that an _nterac_ion potential of the above form applies to every pair of
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form

parHcle is then E = a nv'l, and the pressure is

The asymptotic behavior P =

._ponds to v = 2. In th,_s caset

and (3-72b) as n -- coo

From (3-47), n _ kf 3 and from (3-63), _ -- a n8/3 and

as n a

Generoily_ the energy density has a power-law dependence on n of the

C_ = a nv where v is some number and a is a constant_ The energy per

-_- corresponds to v =4/3, while P= C corre-

P= _ = a n2 which is consistent with (3-72a)

goes to infinity (where is a constant). This mec_ns that for the Levinger-

particles, we find that the energy per particle is

where M is the mass of a particle, n the average number density and g is

its charge, H =mc/-ff as before. In the above, c has been set equal to 1. The

energy density and pressure are then

(3-72a)

p- =
,_,_ (3-72b)

From these two equations it is clear that for a finite number density n0 P < _"

while as n --* co, P -* ,£, but it- never happens that P > _ o

It has been demonstrated above that for baryons under repulsive forces of

the type (3-69)_ which may occur at ultrahigh densityt the main pressure comes

from the repulsion among baryons through a field of vec;or mesons and the p;-essure

due to Fermi energies is of no impor'?ance as the densi;-y goes to infinity,
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4Simmons equatlon of statet P -* _ _ and D --* ct and the speed of sound

does exceed the speed of light. Equations (3-.38a) and (3-38c) reveal that

8/3
P _- p and P > _ at p =oo for the Skyrme equation of state. It has been

pointed out by Zel'dovich that the asymptotlc equations (3-72a) and (3-72b) start

to become valld just about at the point whe re Salpeter_s "cell-method" (Sectlon

111-4d) starts to become applicable. The conclusion is that all the proper models

of the equation of state for a real gas (with repulsive terms) eventually exceed or

approach the limit P = F.,. As soon as this point has been reached, the equation

of state must be switched over to the absolute limit of P- F,, . After that, the

question of which baryonst and how many klnds of baryons1 are to be included in

the mixture has no effect on the equation of state, because in this limit the pressure

depends only on the total baryon number density n, and not on the properties of

the individual components.

The Levinger-Simmons equation of state (which has been used in this

research) reaches this limiting point at aroun_ p ,,- 1016 ~ 1016"5 gm/cm 3 and

that is why the inclusion of higher excited isobars of subatomic particles is not

necessary (Section 111-2) in this research. This is far below the threshold for the

appearance of pions and because of this the pion phase has not been included in

the final composite equation of state which is constructed in the next section.

It was noted earlier that the repulsive forces acting at close range may

lead to a considerable increase in the possible maximum limit on the total stellar

mass (Section 111-4a) over that for tile case where the equation of state of non-



194

interacting particles has been used. Due to the upper limit set on pressure by

relativity as discussed here_ this increase in the total mass of stars and the point

of the maximum mass may be considerably limited. This problem is further in-

vestigated after the neutron star medals have actually been constructed.

III-6 COMPOSITE EQUATION OF STATE
...... i

The final equation of state for mixtures has been construc,_ed as follows:

It has been noted that the interaction forces are negligible for ieptons, and the

equation of state for an ideal gas has been used to obtain the partial pressures

and partial energy densities of electrons and muons (equations (3-30b) and

(3-30c)). It has been assumed that all baryons present are under the same potential

field of the type v8 or v7 t the Levinger-Simmons potentlab which is a function

of total baryon densffyo Thereforc_ kf appearing in equation (3-63) corresponds to

the total baryon number density, The actual formulae used are summarized below:

t ÷ ,

L ..S (3-73)

where the summation is over all particles (both leptons end baryons) present, We

have noted that the appearance and the abundance of each particle is a function of

the total baryon number dens!ty n. Therefore with an increase in n_ more particles

are included in the first terms of the above summat!ons, a j/2 is the ratio of statisti-

cal weight of the jth particle to the ncutron.
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Kn = '11'1_

a. =C,9..I,-kl) Z_, is the spin, and mn is the neutron mass.
J d "

is related to the number density of jth particle through

3
The potential terms are

(3-75)

•_ (3-75)

a71. R "a _._'--_ "_'_ _J (dynes,/cm2)

(3 q'l "2 n) 1/3

summed over all baryons a0

where kf=

n=Z n A

C, = 1.602 x 10-6 ergs/Mev.

which are present. (3-77)

ve ' t,4e, O_,' _V, _ aUa=,,__a,have been determineda and _ are constants given in (3-63_).

by the method outlined in the last part of SecHon lil-4fo

First the relaHvlstic parameter t n of the neutrons has been chosen cs a

free parameter. Then nn is found from (3-75). The abundances nj of all the

particles j which are present in different phases have been already calculated

in terms of nn in Section 111-2. With the help of (3-75) each nj can then be

converted to tj . These va!ues are subsH_u_cd in (3-73) _nd (3-74) for all par-

ticles present to obtain the first, terms ot: energy density and pressure. On substitut-

ing the partial number densi'.:'ies of all baryons n_ into (3-77) above, the total

baryon number density n is found. Then the potential terms of energy denslt 7 and

pressure are determined through the above equations (3-76).
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The total matter densit._es are found from the equation

= Z  r'L, (3-7e)
g.

In this way the composite equation of state is expressed in terms of a parameter

t n for neutrons which _s related to neutron Fermi moment-urn PF through t n =4

sinh -1 ( _'rF ) and to the neutron number density through (3-30a).
mnC

In the higher density region where abundances are calculated by the

method of Section i11-2, the number densities of all elements are expressed in

terms of neutron number densi_-y and the above fo_m of the equation of sta_-e

with t n as a free parameter is perfectly valid° However, in the much lower

density region of heavy ions and e_ectrons of Chapter ib abundances are expressed

in terms oF matter den3i_y _. At zero-temperature no neutrons are present for

densities below about 3 x 1011 gm/cm 3 and the parameter t n itself loses its

meaning°

Furthermore, the problem st_ll remains regarding the [ntermedlate region.

To explain the situtafion, number densities of different elements a._e plotted as a

function of matter density in Figure 22° En t-his graph let us 1:ocus our attention

on the electron number densi'?y curve marked e-o The part for density below

about 3 x 1011 gm/cm 3 was obtained from TabSe 6., _'he results of Chapter I!. Let

us call this region (I). The part for jO > 8 x 1013 gm/cm "_was obtained by the

method described in Section 1_1-2. Let us cail this re_on (IS0. The intermediate

region where 8 x 1013 gm/cm 3 > _ > 3 x 1011 gm/cm 3 w_ii be called (11)o The

border between region (I) and (ll) _s marked by (a), and that between (ll) and (!10

by (b), In region (I), we noted that electrons are captured by heavy nuclei when
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density increases. The nuclei containing too many neutrons will eventually

become unstable and disintegrate into free neutrons. At a density slightly higher

(a), the elements near the peak at EF _, 23 Mev_ such as 38S_ 20 , willthan

coexist with free neutrons° By the time we come to the border (b), all the heavy

nuclei are expected to disappear leaving only neutrons_ protons and electrons

in equilibrium. The exact behavior of the transition of elements from the group

of heavy nuclei, electrons and neutrons at (a) into the pure neutron-proton-electron

configuration at (b) is quite complicated but the principles which govern the con-

dition of equilibrium are the same in regions (I), (11) and (11_), namely, the

conservation of tot_I energyr charger and total baryon number including both the

bound and the continium states+ Also we note that a d_scontinuous change of ion

numbers is not allowed° This means that a sudden change of heavy elements of

(Z _ 38) to protons (Z = !) a._ a fixed density does not occur in reality. It is

most reasonable to assume rather that the charge Z changes from around 38 to 1

from (a) to (b) (in the density rcnge from 3 x 1011 gm/cm 3 to 8 x 1013 gm/cm 3)

in a smooth way+ tn this case the ionic charge Z is expresse_ in the followlrg way:

z-l÷ 37.x )
where P 1 and j0 2 are the matter densities a_ (a) _"1 --3 x 1011 gm/cm 3 and

(b) _2 =8 x 10 i3 gm/cm3 respectively°

Actually, e!ectron number density increases sllghfly as we go from (a) to (b)

with an increase of neutron number densityt but an order of magnitude analysis reveals

this rise is quite small and not appreciable in Figure 22° This indicates that the
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greater part of the extra density aswe go from (a) to (b) takesthe form of

neutronpartial density° Figure 22also indicates that there is a rise in the total

ion number density as the ionic charge changes from about 38 at (a) to 1 at (b).

At zero temperalure region (I) is an ion-electron phase w_h no neutrons.

With a f|nite temperature a sharp rise in neutron number densiHes near (a) occurs

(from Chapter il); the lower the temperature, the sharper the rise° In region (!!),

positive ions (heavy nuclei and protons), electrons and neutrons are present where

the relative concentrations change rapidly from (a) to (b). Up to this point, it

has been most convenient to express everything in terms of matter denslty _,

because the abundances nn, ne, etc+, have been expressed in terms of _ in thls

region, t n and t e are found from nn and ne through (3-75)and they have

been subs Htuted into the equation of state (3-73) - (3-74)+ For _ > 8 x 1013

gm/cm 3, everything has been expressed in terms of nn and t n has been chosen

as the free parameter. Speclal care has been taken so that all the physical quanH-

ties are continuous at (b) where _he free parameter is changed from ._ to t n,

It has been shown that the pressure obtained in _h_s way (Levlnger-Simmons potential)

eventually crosses the llne P= _ o lmmedlate!y_ on crosslng this line, the

equation of state is switched from (3-73) - (3-74) to the asymp.+otlc equation of

_ta._e. Both of the as,vm_toHc expressiens

1
because there is no guaran_ee that P > -_

1

P= _ and P =-_ _ have been used,

is ac.+uaily realized physlcally, even

though it has been shown in Section !11-5 that this is posslblo.

The solid line in Figure 25 represents the final composite equation of
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state. The nearly straight fine in the lower density region corresponds to the

electron-heavy ion configuration. Even though it is not apparent from the graph

this line is found to be slightly bent downward if we examine it more carefully,

which is due to the decrease of Z/A with the increase in density in this region.

The big dip at around 1012 ~ 1015 gm/cm 3 is due to the attractive potential; in

high densffy regions it is seen to be switched over to the asymptotic equation

P=_.
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CHAPTER IV

MODELS OF COLD NEUTRON STARS

IV-1 GEINEP,AL RE/v_RKS

201

The problem of the internal structure of neutron stars is fundamentally

related to the properties of dense matter. The discussion in the previous two

chapters reveals that dense matter has properties which differ markedly from

those of ordinary matter° From the study of the equilibrium composition in terms

of densities considered in these chapters, we recognize that the problem of the

s;'ructure of degenerate stars can be worked out in two phases. In one phase the

densi!y of the star is relatively lows being around 106 gm/cm3o In this case the

crushing force of gravity is counteracted by the pressure of degenerate electrons.

A star in this category, that is, one for which the equilibrium configuration is in

the electron-nuclear phase, is generally known as a white dwarf° Because ;he

Fermi pressure of the electrons is not sufficient to ba!ance the gravitational force

in such a star when ;'he mass is greater than a certain crltical limit (about 1o4/v_),

the theory indicated the conclusion thai" beyond the mass limit the star would be

crushed to a point. (7) However, before this limit is reached, it is now known that

through the inverse beta processes, electrons are captured by the nucleus and the

equilibrium state grcduaily shifts from the electron-nuclear phase to the neutron-

phase in the manner detailed in the last two chapters° it ha; been shown that a

stellar configuration whose cen_ral density iles in the range from 108°5 gm/cm 3

13o5
to 10 gm/cm 3 (the transition region from the e_ectron-nuclear to the neutron
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phase) is unstable (8) but another stable stellar configuration is reached when the

central density becomes equal to or greater than about 1014 gm/cm 3. Here,

neui'rons are the primary component in the equilibrium composition of the star and,

consequently, it is generally known as a neutron star. When the central density

_c _ 109 gm/cm 3 the electron pressure is no longer sufficient to counteract the

enormous pressure due to gravrty which increases rapldiy with increasing density_

but with a further ;ncrease of density, the number of free neutrons increases, and

1038 "3 twhen the neutron number density reaches about 2.6 x cm the partial

pressure of degenerate neu_rons becomes sufficient to counteract gravity. This

corresponds to a fetal matter density near norma! nuclear density (about 3 x 1014

gm/cm3), where the Fermi level of the neutrons is about 60 _v'tev. In this region

neutrons const;tute a non-relativlstlc degenerate gas. When the central density

rises further, another crushing point is reachcd where even nuclear matter is crushed

At the first crushing point (known as Chandrasekhc_r's mass limit), the pressure of

degenerate e_ectrons is overcome by gravitational .forces. At the second crushing

point (known as the Oppenheimer-Volkoff mass limit), ;rav_'ational force has over-

come even the pressure of degenerate nuclear m_tter.

The title of this thes_s is "Neutron Star Models," but because of the inter-

esting behavior oi: degenerate stars in general, den_tles rcng;ng from the white

dwarf regions to the neutron s_ar regions have been covered in this research, a;though

of course the main emphasis has been placed on higher density regions. For the

pL:rpose of comparison, I think it convenient to first introduce the models of other

physicists. (in the following, the notation ,y or _ m is used for matter density,



and _ for energy densltyu unless otherwise stated.

denotes the mass of the sun = 1.985 x 1033 gins,)
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The symbol M_ or _)

IV-2 PREVIOUS WORK

a° Models of White Dwarfs

An extensive investigation of the general problems related to white dwarfs

is found in reference 31. Theoretical models of white dwarfs have been con-

structed by Chandrasekhar. (7) From equations (3-28) and (3-29) we get

"-_(.X) = _ _'gx _ ._,)(_C_'f" l)_"z_3 sinh-lDc , where (4-1)

2.2.-

-" :?, o°2
with the same notation as used in Chapter lib and x = pF/'mc, These equations_

which ore identical wlth (3-30c) and (3-34) iF the relation between t and x is

as given in (3-35), are used as the equation of s'.:ate in ChandrasekhaPs models.

The Newtonian equations (1-I) and (1-2) were then integratod_ with the usual

boundary condlt_ons.

The relation between the cen;-ral density and the mass of his models is

shown in Figure 26_ where ue is sot equal to 2. As the density goes to infinlty_

mass approaches a cri':'ical value of 1.44 M O. RudkjSbing (62) pointed out thot

Chandrasekhar's maximum raass is too large due to i'he neglect of a relativistic

"spln-orbit" e_fect coming from the strong radial electric field in whlte dwarfs_

When this modE;cation is taken into account, the limli'_ng mass reduces to about

1.2M O o Rudki_lbing"s result is plotted in Figure 26 together with those for other
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models. His conclusions have been criticized by Salpeter (reference 11(b)). The

mass-radlus relation of Chandrasekhar_s models is shown as a dashed curve in the

upper portion of Figure 27. AI_ of the white dwarfs observed lle along the curves

in the lower portlon of Figure 26, with mass ranging from about 0.2 to 1.2M_ .

The typical radii of such s._arsrange from about severa! thousand kilometers to

ten thousand kilometerst as Figure 27 indicates°

b. Orlginal Work by Landau (!)

By applying the equil_br|um condition to bodies of large mass and by using

Newtonlan mechanics, Landau in 1932 reached the following conclusions. The

minimum mass a s;-able degenerate s_'ar can have is about 0.001 M@, the maximum

mass for a mixture of electrons and nuclel is roughly io5M O , and that of a pure

neutron configuration is about 6M_ o His estimate of the minimum mass was based

on the requirement that the sum of the gravitational and kinetic energies per particle

oF core should be lower than the energy per particle in stable nuc!ei. The particu!ar

case of oxygen was used in his derivation. Minimum mass of stable neutron stars

was estimated to be about 0.2M® (65) o His estimate of the maximum mass oF an

electron-nuclear con,_igura_.ion (whi_e dwarfs) is excellent, but his maximum mass

of about 6M O _or neutron stars is too large° This is mainly because the Newtonian

theory of gravitation that he u_ed in his analysis is not justified for neutron s;c_rs,

although it is perfectly vaiid for white dwarfs.

c_ Limi_'ing Mass by Oppenheimer and Serber (3)

Apparently stimulated by Landau_s proposais, an improvement was applied to
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the estimates of minimum mass of stable stellar neutron cores by Oppenheimer and

Serber (1958). They adopted a requirement tha_ the neutron's free energy in the

core be less than that in the nucleus in order that the core be stable with respect

to the most firmly bound nuclei --- which led them to about 1/6M O as the minimum

mass. They also noted that in the region where a neutron configuration can exist,

nuclear forces should not be neglected, and they assumed the forces between

neutrons to be of i he spln-exchange saturating type. This reduced the minimum

mass for core stability to 0.1M Q.

d. Models of Neutror_ Cores by Gppenheimer and Volkoff (4)

In 1939, Oppenheimer and Volkoff made an important step forward from

Landau_s original work, by constructing structure equations of general relativity

and by using the equation of state of an idoal Fermi gas of neutrons. If the functions

E, (P) in (1-8) and (1-9) are eliminated through |he equation of state expressed in

the forms (3-30b) and (3-30c), the two hydrostatic equaHons are expressed in terms

of the parameter t only. in this form, the hydrostatic equations were integrated

fromU=0and t=t c at r=0 to r=P_ where t=0 and U=M. R determines

_he boundary of the ma_ter disiributlon and the radius as seen by a distant observer.

M de._erm_nes the observable or gravitational mass. The system of units as intro-

duced _n Chapter ! was adopted°

The central density-mass relation of their models is shown by the upper

dashed cu,_ve in Figu:e 26 and their mass-radius relation |s given by the dc_shed

curve in the lower port_on o,_ Figure 27. Their result may be summarized as follows:
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the massincreases with increasing t c until a maxlmum is reached at about t c = 3_

after which the mass drops until a value of about 1/3M 0 is reached at t c =co. No

static solution exists at all for M > 3/4M,.3, two soluHons exist for_3/4. _) Mg/%

M _ 1/3Mc), and one solution exists for M < 1/3Mc), but iF its mass is less than

about 0.1M 0 a neutron core is no longer stable against disintegration into nuclei

and electrons. At the polnt of mcxlmum mass which comes at about 0.7Mc), the

radlus is about 10 kilometers and the central density is about 1016 gm/cm 3. (See

Figures 26 and 27.)

They approached the s._abillty problems using the theory of polytropes, and

concluded that among the two solutions in the range 3,/4 t> M >f 1/3ME), the less

dense models are stable, while the more condensed ones are unstable. The radius

of thelr stable models is about 10 to 20 kin, the central densities lylng between

about 1012 and 1016 gm,/cm3o They posed the interes'Hng questlon of wha_ happens

on bodles exceeding the cr|tlcal mass 3,/4M@. If repulsive nuclear forces are taken

into account the same au'ihors es_h.nated qualitatively that the maximum mass may

reach about 1Mc). This result was obtained by ap,olylng the relativisHc ilmi'.'ation

P=1/3

e. Models of Degenerate Slats by Wheeler, Harrison and Wakane (8' 60)

Applying their composite equation of state introduced in Section i!l-4e,

equations (1-8) and (1-9) were integra_'ed with ,'he boundary condition at _',he

center U(0) =0 and _' (0) = F_c. The radius of the s;ar was taken as the di_tance

f_om the center to the po!n_ where P =0o Their resui';-s are summarized in Figures
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26 and 27 (solid curves). Up to a central density 107 gm/cm, the agreement

between the Chandrasekhar, Wheeler and P,udkigbing models is quite satlsfactory,

but V/heeler's models deviate more and more from the models of Chandrasekhar

and Rudkj_lblng for _ c > 108 gm/cm 3. This is because t_e inverse beta process is

included in Wheeler's equation of state whlch prevents the elec._ron number denslty

from increasing indefinitely with an increase in central density. That is, electrons

are lost through the capture process and the electron pressure does not rise suffl-

clently with the increase of matter density. A turning point occurs a_ around 1.2M_).

In the region of central denslt/from about 108 gm/cm 3 to 1013"5 gm/cm 3

equillbrlum mass decreases with an increase of central density. [:or a reason to be

explained la_er, this range occurs in an unstable region while in the lower portion

o._ the curve up to about 1.2Mo, stars are stable. When the central denslty has

reached the order of ma_nltude of normal nuclear densit)'s neutron pressure is

sufficiently l_ge to aga!n glve stable configur_tlonso Wheeler's models _or

_oe>,_, 10!4 gm/cm 3 are essentially the s_me as the prevlous mode!s o{: Oppenheimer

and Volkoff.

f. Cameron's Models of Neutron S_ars(9)

In the previous models of neutron stars, nucleon-nucleon in_'eractions were

ent;rely neglected_ although Oppenheimer and Volkoff gave a brief discussion on

the importance and _ossible effects of _uch nuclear forces. Cameron took the

important first step of constructing neutron star models in which these interact!on

forces were _aken into account quantitatively. The Skyrme equotion of state_ intro-

duced in Sectlen 111-4b, was used for that purpose° Not only observable mass, but
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also proper mass and gravitational binding in mass units was obtained by integrating

equations (1-45) and (1-46) and the usual relativistic hydrostatic equations (1-8)

and (1-9)_ slmultaneously_ The radius was defined as the distance from the center

to the point where the density has decreased to 108 gm/cm3_ which corresponds to

the point where the scale height (that ist the distance over which the pressure falls

by a factor e) is about 20 meters in the lightest models and about 1 cm in the densest

models. Nineteen models were constructed in this manner. To see the effect of the

short range strong repulsive Forces encountered at high densitles_ a hard core model

was also constructed whose parameters were fitted to experlmentai data on high

energy proton-proton interactions. The potential goes to infinity at a hard core

distance of 0_4 fermls. In this model., the gas abruptly becomes incompressible at a

density of 3.7 x ]016 gm/cm 3 and obeys equation (3-38c) at lower densities.

The results are presented in Table 1_ Figures 3 and 4 in reference 9_ The

density profiles of his models are shown in Figure 28. Except for some of the densest

modeis_ the density distribution inside a neutron star is practically constant until we

come to the very edger then i_ drops abruptly_ almost vertically down to zero. This

behav|or more than justifies '.'he fact that the integration was terminated at f = 108

gm/cm 3. in the higher dens.:ty regions the equation of the density profile was given

in analytic form as f =8 x 1019/r3/4 for _ up to ._

uppermost curve in Figure 28 meets the horizontal I_ne

= _c that is, until the

f = _c. The radius in the

stable region is Glmost conslanb ranging from about 7 to 9 kilometers.

Cameron confined the range of validity of his models to within the region of

central densi._y !ess than or equa_ to about 1015 gm,/cm 3. The reason is that a
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considerable amount of uncertainty is inherent in the higher density regions

because for ? > 1015 gm/cm3: (1) four-body and higher terms in the nuclear

potentials may become significant and would tend to make the pressure-density

curve even sieeper_ and (2) on the other hand the hyperons present for _ > 1015

gm/cm 3 will first depress the Fermi level of the neutrons Far below the value ex-

pected for a pure neutron gas which he was considering in thls work_

On applying th._s criterion to his mode!s_ some of which are listed in Table Bf

we conclude that they must certainly be reliable up to about 1 solar ma_s. At

?c =1015 / 3gin/cm _ the exact value of the observable mass is 0.74M_) and the radius

is 8°75 kin. At the slighily higher central densi_:'y o_ Io5 x 1015 gm/cm 3 the mass

has increased t'o 1.36M@ (almost twice as large as the Oppenhelmer-Volkoff mass

I'..mit of 0t7Mo) , and the radius is 9.26 km (about the same as the radius of

Oppenheimer-Volko_f s_a," of 0.7M_). This is a s_gni_icant result _'o which i_ is

worth calilng attenl'iono The ma;,'!mu.-n observable ma_s comes at about 2 solar masses,

with a radius of 8o2 kilome_'erso Noting that here the central density of the star is

already 4 x 1015 gm/cm 3 where the equation of sta,_e is unrel[able_ Cameron

comments in his paper _hat his fi,sure for the maximum mass should not be taken too

l lterallyo

The most important outcome of Cameron_s work was that it gave the first

quan|'itative indication of the poss:bi!;.ty that the obsgrvab!e mass of: stable neu'_ron

stars might be considerably !_rger than 0o7Mg, ear!Jar maximum mass limit on such

e,n obiocto It migh';- in fact be even larger than the mass limit set on white dwarfs

(about 1,2 _o 1.4-Mg).
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TABLE 8. Orlginal neutron star models by Cameron (Skyrme type) in medium

and low density regions, where _c is the central matter denslty, pc is the central

pressure, R is the stellar radius, and M, Mp, and M B are the gravitational mass,
proper mass, and binding energy in mass units.

_C(gm/cm3)l pC(dynes/cm2)! ?,(kin)

,x;0,3 ,03,ix 27°94

3x1013 14.398x1031

M/M © Mr/ 
mm

0.04434

MB/Me

0.04424 0.00009819

!23,26 0.04754 0.04768 0.0001456
I
!

1014 i1 x 1o168 x 1032 i 21.41 0°04426 0.04441 0°0001483

2 x 1014 3°474 x 1032 20_49 0°03608 0°03622 0o0001209

3 x 10 TM

4 x 10 TM

6 x 10 TM

1o306 x 1033

3°632 x 1033

1.479 x 1034

3,,830 x 1034

7.830 x 1034

2,750 x 1035

10.40

7.409

7.538

8.222

8:752

8 x 10 TM

0,03278

0°07062

0.2295
!

] 0.4701

0_7459

1_357

1 x 1015

j 0.03300
I
!

J 0.07157
f

t 0°2375
i
I
[
1 0_5008
I

j 0,,3212
J

1°626
I

1o5 x 1015

0.0002134

0_0009427

0.005349

0.03075

0°07554

t

0,2695

I
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The minimum mass of stable neutron stars was also estimated, it was pointed

out that in models with smaller densltiesz the gravitational binding in mass units is

much less than 1% of the proper mass and that such models are energetically unstable

against transformation into iron white dwarfs. Using an argument more or less

similar to the one which led Oppenheimer and Serber to their value of about 0.1 M

for the lower mass limit (IV-2c)_ in Cameron's models the minimum mass for stability

was estimated to be 0.05 M(_.

Another contribution of Cameron's paper _s the useful discussion on hot neu-

tron star models° A possible mechanism for the formaHon of neutron stars is discussed

here and several interesting problems which had not been touched upon in previous

papers on this subject were posed. One, for example, concerning the effect of hot

atmospheres and of cooling on the detectability of neutron stars prompted me to

undertake the present research.

g. Models for Zero-temperature Stars by Hamada and Salpet_r (12)

Using the equation of state constructed in reference 11(b), Salpeter and

Hamada investigated the properties of degenerate stars. The Newtonlan equations

of hydrostatic equilibrium were integrated from the center to the point where P---0.

To see the effect of composition, a set of models with different elements and another

set with an equilibrium composition of cold malter as introduced in Section 11-3b

were constructed. As in Wheelerls models, the mass of Salpeter_s models reaches a

maximum at a certain point as central density is increased, and with a further increase

in _ c the mass decreases, due to the electron captures in the equation of state used.
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C
At this maximum point, /VV'M® =1.4, 1.36, 1.34, 1.17, and 1.11, and log p = 9.78,

9.5, 9.28, 8.16, and 9.1, for a chemical composition of C 12 Mg 24, Si 28, S32 and

Fe 56, respectively. The radius of a star at this point is from 2 to 4 times 10-3 R 9,

(where Re =6.951 x 105 kin, the solar radius), depending on the composition. For

the equilibrium composition, the maximum mass is 1.0150, the radius is 3°5 x lO-3Rg

and the central density is around 109 gm/cm 3. Near the critical mass, the equili-

brium composition appears to give the smallest mass as compared with other compo-

sitions.

Neutron star models were constructed with the Skyrme-Cameron equation of

st'ate (3-38C)o In the outer layers of a star in which p < 3.4 x 1011 gm/cm 3, the

equilibrium composition was used. An interesting outcome is that some of the

light,st neutron star models (1013< pC < 4 x 1014 gm/cm 3) have large envelopes

of heavy nuc!el and ' ' c 1014electrons= For instance, when p = 3.3 x gm/cm 3,

R =4.06 x 10-3 R@, M = 0082 M e, the mass contained in the neutron core is only

about 5% of the total mass, and the radius of the core is only about 0.3% of the

radius of the star (with its envelopes included)° The most extended envelope

(R =8_8 x 10-3 Re) is obOe!ned when pC =3.42 x 1014 gm/cm3; both mass and

radius fall rapidly with an increase of central density beyond this value. The mass

reaches a minimum value oF O_05M 0 at pc = 3.5 x 1014 and then increases fairly

rapidly. When pC =1015 gm/cm 3, then M,-,1M o'

c 1/-, cm 3
the radius is negligible for p ,_, 5 x 10 gin/ and that on the mass is

1014 "_negligible for p c > 3=5 x grn/cm °.

The effect of the enve!ope on

Noting :'hat the effects of general

relativity are completely neglected, Salpeter comments that the tremendous effect
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of the envelope near pC~ 3°4 x 1014 gm/cm 3 ,ndicated in the above discussion

may be unrealistic. These results will be compared with my results later in this paper.

h. Su,oerdense Stars of Ambartsumyan and Saakyan (14t15t16)

(i) Work in Reference 14 - Ambartsumian and Saakyan constructed a

series of superdense stellar models for: (a) an ideal Fermi gas of an assembly of

baryons in equillbrium_ and (b) a real gas of the same composition in which inter-

action forces are taken into account. For (a)_ the equation of state with the inter-

action terms nV(n) and n2(SV/_n) in (3-41) set equal to zero was used, and for

(b)_ these interaction terms were included although the second term in (3-40) was

neglected. The equilibr;um concentrations of wrious elements as obtolned in

reference 13 (similar to the revised values of abundances obtained in this research_

in Section !!i-2) were used. tnr the "relativistic parameter" of neutrons_ wcs used

as a parameter of integratlon_ and tile inlegration of equations (1-8) and (1-9) was

carried out from the cen;_er to the point where t n =0. The mcss-cen_ral density

ralatlons(dcshed curves) and the radius-central density rela_qons (solid curves) for

their models of an ideal gas (ma_ked (1))and area! gas (marked (2)) are shown in

Figure 29. The central density is represented by the expression tan -1 tn(0). The

maximum mass for an ideal baryon gas is about 0.64/V_ somewhat lower than the

Oppenheimer-Volkoff value of 0.7Mo; that for a _eal baryon gas is abou_ 1.0M_.

The corresponding radius at each maxrmum mass is_ for an ideal gas about ! 1 kin,

and for a real gas about 6 kin. At maximum mass, the central energy density o_ the

star is about 2°4 x 1015 gm/cm 3 for an ideal gas and about 1016 gm/crn 3 for a real
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gas. After passing the maximumt the mass drops with a further rise in central

density, reaching a minimum of about 0_2M e for an ideal gas and about 0.64M(_

for a real gas before increasing slightly. Similar minima occur for radii, also. In

the high density limit, these models develop a central singularity. The asymptotic

values of radius and mass are about 11 km and 0.32M_) for an ideal gas and about

5 km and 0.7M_) for a real gas. A model of an incompressible fluid was also con-

structed. For _, c<_, 1015 gm/cm 3 the entire stellar body conslsts of neutrons, while

for f, c > 1015 gm/cm 3 a hyperon core is developed at the center and rapidly grows

c 1016to almost 1/3 of the total stellar size. For t n > 3 (or _.. c > 1°1 x gm/cm 3)

the bulk of the star's mass is in the hyperon corer and the effect of the outer enve-

lopes of neutrons (and of electrons and protons in envelopes further out) is not

important°

(ii) Work in Reference 15 - To complete their discussion on the internal

structure of superdense stars star_'ed in reference 14, Ambartsumian and Saakyan

calculated the following physical quantities of the same models for (a) an ideal

baryon gas, and for (b) the real baryon gas construcied as in reference 14: (1) the

actual stellar radius Ro (or the proper radius) defined by (1-43), (2) the total baryon

number of the star, N, defined by (1-441_ and (3) two kinds of gravitational packing

fracHon c_1 and a 2 defined as follows:

a 1 = _.M1/Nm H, where _M 1 :-N mH-M (4-2)

a2= _ M2/M, where _.M2=M ° - M, M o =4"f_" _/'glr (_ r2 _(r)dr

.Jr o (4°3)

where c = 1, m H is the proton mass, M is the gravitational mass of the star U(R),
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_M is the binding energy in massunits (or gravitationallmassdefect), and Mo is the

total energydensity integratedover the whole propervolume. Besldesthese

quantitles, the radlal distributlon of parameter tn(r) (correspondingto density

dlstrlbutlon)l the massU(r), the time metric goo(r)l and the radial componentof

the metric grr(r) were calculated for an ideal baryongas. Someof the results in

references14and 15are shownin Table 9. Near the surface1grr is about 1 to

1.3 and goo rangesfrom 0°7 to 1for modelswith tnC from 1 to co (that is1 for pC

from 1014 gm/cm 3 ._oco). goo vanishes at the center and shows a slngularity at

tn c =co. Gravltationai mass is plotted against total baryon number in Figure 5 of

reference 15. For N > 6°5 x 1056, there are two or three solutions of the structure

equations (i.e. two or three values of gravitatlonal mass M) for one value of N,,

for N up to 13.5 x 1056. For a larger number of baryons there exists no solution.

At the maximum point, there is one value of mass (the maximum mass) where

tn c ,-, 2°9 (or _c,,, 1016 gm/cm3)o The definition of _M 1 above corresponds to

our M b (_'he gravltaHonal bindln_) defined in Section i-4co Our definition differs

somewhat from thelr definition. _ M 2 from the definition appea_s to express the

difference between the actual macroscopic mass of the star and the mass observed

by a distant observer.

(i_i) Work in P_e_erence 16 - Sa_kyan pointed out tha. _ the expression for

energy density p =mn used in reference 9 is an oversimplified onet and repeated

the calculaHon using the relativistlc expresslon for Skyrme's equation of s_ate

(3-39). The conclusion is tk_at the result of reference 9 and that o_: reference 16

coinclde for _ c< 1015 gm/cm 3 and M < 1Mg_ but for higher densities the two
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deviate from each other appreclobly.. The maximum mass occurs at about the same

central density, but its value is reduced from about 2M o to 1.7M O .

IV-3 MODELS CONSTRUCTED IN THIS RESEAi_CH

a. General Remarks

From the previous discussions we see that a general procedure for obtaining

models of dense stars consists of a step by step integration of the equations of

hydrostatlc equilibrium (1-1) and (1-2), or (1-8) and (1-9), and related differential

equations such as (1-45) and (1-46), and using a suitable express_on of the equation

of state and the proper boundary conditions at the center and on the surface. In this

research various forms of the equation of state are used; that for (1) an ideal gas,

(2) a real gas with Skyrme interaction, and (3) a pure neutron gas or a complicated

configuration of mixtures with a Levinger-Simmons type interaction .... VB , V,_

or a combination of the two, V_,,. In the following the models constructed in this

research are presen._ed !n lhe order of increasing complexlty_ starting with the

simplest case -- an ideal Fermi gas of neutrons. Finally, six models are selected

from these as basic models to be used extensively in Chapter V_ The results will be

discussed and compared wi_h the models of others.

A brief inspection of the differential equations of Chapter I shows tha_ they

cannot be solved analytically. There are various me_hods for the nume._ico.i solution

of such differential equations. In this research: the Adams predictor-correcter

method (64) was used for all the numerical integratlons performed° Besldgs this_

another technical problem is that an interpo!ation of a high order of accuracy is
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required in the various kinds of numerical work (for instance, this problem was

already faced in Section 111-4f in evaluating the Levinger-Simmons potentials of

the exchange type v e and _e and their derivatives). To meet this requirement

the polynomial interpolation method (64) has been adopted throughout this research.

A special interpolation subroutine using the polynomZal method and an integration

subroutine using the Adams method of high accuracy constructed by Mr. B. Sackaroff

at the computer department of the Goddard Institute for Space Studies became

available. These subroutines are used in conjunction with the main programs and

other subroutines I constructed, whenever necessary. The numerical errorst inherent

in any numerical analysis, should_ therefore_ be conslderab!y eliminated.

b. Models With an Ideal Fermi Gas of Neutrons

The model construction in this research started with _'his simplest kind for

various reasons: (1) to doub!e check previous resul_s with the 7094 computer, (2) to

orient myself to the work and to m_ke sure that the main Fortran program and sub-

roul'ines ! constructed worked properly by comparing my results wi_h those of others,

and_ most important_y_ (3) to caiculate other interesting physical quantities such as

the gravlt_tlonal b|nding and its behavior as a function of central denslty_ someth|ng

whlch had not been done bet:oreo

Equations (1-8) and (1-9) as well as other dit'_e_entlal equations of in.*erest

such as (1-45) and (1-46) have been integrated with the equal-ion of state (3-30b) and

(3-30c), from the center (where u(0) =0_ and tn(0 ) =tnC ) to the point r = R where

the density drops to 108 gm/cm3. The general shape of the density profiles of these
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models are similar to those obtained earller by Cameron and shown in Figure 28,

which indlcates that this surface boundary condition is perfectly legitimate for

neutron stars whose central density and mean density are both above about 1014

gm/cm3°

The results are shown in Figures 30, 31, and in Table 10. In Figure 30, the

dashed curve represents the gravitational mass (which is actually seen by a distant

observer)as a function of the central energy density. The maximum mass is approxi-

mately M ~ 0o72r_ where _c,,, 4 x 1015 gm/cm 3, as expected. A comparison of

Figure 30 with Figure 26 shows that this is in perfect agreement with the previous

work. In prevlous work, models with central energy density _c up to about 1017

gm/cm 3 have been constructed by the usual toe';hods and then one more model with

_c = co was constructed by using an analytic approxlmal'ion. That is, there was a

gap between the model with _.c ~ 1017 gm/cm 3 and the one with the central

singularity (_c =co)= It is interesting to explore the behavior of superdense stars

in these ultrahigh density regions° In the present research, i'he integration was

carried out for a sequence of models (which included those with central energy

density E-,c as high as 10 22 ~ 1023 gm/cm 3) until no f!uctuation from a s.raight_"

vertical llne (in the _c. M plane) was observed in a plot like that shown in

Figure 30. The straight vertical llne is a sign that we are already in a singular

region, and that the mass, rc.,dlus and other properties of models lying on this vertical

line are those possessed by tke extreme model with _,c =co. Figure 30 shows the

outcome of such an investigation. Instead of going straight from the point _c,,, 1017

gm/cm 3 to _.c --co, both the gravitational mass track and the proper mass track in
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the _ c_ M plane experience one minlmum-mass-hump (at around log _c ,,, 17.7)

and one maximum-mass-hump (at around log _c ~ 19o4) before developing a

singularity at a finite mass (vertical llne), it was reported (61) recently, however_

that the existence of such a small second hump (maximum) was observed in models

in the ultrahigh density regions constructed by Misner and Zalolsky (24) who used

the limiting equation of state P= _ or P-_/3. We shall return to the discussion

on this topic later (IV-4e).

The solid curve in Figure 30 represents proper mass (the mass before i: was

assembled into a star) as a function of central density. It is quite interesting to

see that the proper mass becomes less than the gravitational mass for tog E,c_ 16.7.

This is just what is to be expected as e:_p[alned later (Section IV-4). In Figure 31,

central density is plotted (the dashed curve for an ideal gas_ against stellar radius

(the radius of the star actua!ly seen by a distant ob:erve_o Combining Figures 30

and 31, we see that the radius o_ the star with the maximum mass {0_72 _) is about

9.5 kin, as expected.

In Table 10, various physical quantities of interest are listed for ten such

models with log 10 _c (the central density in cgs units) ranging from 12o41 to 18o36.

pC is the central pressure, R is the radius in kilometers, M,,/Mg is the gravitational

mass U(R) in solar moss units, Mp/M o and M[_/'M© are the proper mass and

gravitational b_nding in solar mass units, a is the ra|'io of the binding energy in

mass units to proper mass, _(R) is the red shift, g44(R) is the time metric and grr(R)

is the radial component of the metric gl_ z/ evaluate',J at :'he surface of the star. The
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first five quantities are obtained by a series of integrat|ons performed in the manner

described earlier for given initial values of tnC. M B , a, g44(R), gee(R) and _ (R)

are calculated through the following simple relations which are derived from the

definitions given in Chapter I:

MB/M o = MTM _ - M/M e (from Appendix 2) (4-4)

(R) = _ _/X = 1.47 (M/Me)/R(km) (4-5)

g44(R) = 1 - 2_ (R)=- 1/(grr(R)) (4-6)

o MJMp (4-7)

Comparing my a defined by (4-7) above with a 1 defined by (4-2) by

Saakyan, and examln[ng the def[nitlons o_ terms involved, we can easily see

(Appendix 2) that my a and Saakyan's a1 mean the same quantity, a fractional

binding energy or a packing fraction of gravity. This coincidence applies for a

pure neutron configuration (neglecting proton-neutron mass difference), but is no

longer true for a configuration of mixtures (Appendix 2)_ For mixtures, a more exact

definition (4-7) with M and Mp

(!-8) and (1-45) must be used.

wl_ich are obtained as the solution of equations

Let us compare a in Tab!e 10 and a I in Table 9.

The small individual deviations seen between a and a1 are reasonable, considering

the errors inherent in the definition of a 1 given by Saakyan (which was just pointed

out) and considering that the models of the present section neglect the effect of

hyperons in the high density regions entirely. The general agreement is then satis-

factory. Both tables 9 and 10 are useful in showing the general relation between

tn c and _ co We have seen that the maximum mass occurs at about a central density

in the range from 1015 to 1016 gm/cm 3 which roughly corresponds to tnC~ 2 to 3.
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Theradial dlstrlbutlon of dens|ty, masstgee and grr obtained for modelsin this

section have a similar behavior as is obvious from Figures 1, 2, 3, and 4 in

reference 15.

co Neutron Star Models With the Relal'ivis_ic Skyrme Equation of State

The first set of neutron star models with interaction l:orces in this research

was constructed by the use of the relativistic Skyrme equation of state (3-39)_ with

tn c as the free parameter for a pure neutron configuration° As before, the inte-

gration was terminated at _ =108 gm/cm 3. The relation between central energy

density and mass is shown in Figure 32 (curves marked (1)). The solid curve re-

presents grav[tatlonai mass and the dashed curve the proper mass° Comparing this

graph wlth the one in reference 9 which refers to orlg|na! models of thls type, we

recognize that the results are identical up to about _c ,,, 1015 gm/cm 3 and that

thereafter mass decreases faster in the revised models here. Moreover, the singularity

occurs at smaller masses (M" 1o3 O instead of previous 198, _1 and Mp ~ 1.36 _)

instead of previous Mp ,_ 2SOG)_ The maximum gravitational mass is reduced from

about 2 to 1o7 O and the r_ax_rnurn proper mass from about 3 to 2ol G. In these

models crossing of t_:e grav_.at_onai mass curve and the proper mass curve does not

occur. Comparing the Skyrme-Cameron type modgls obtalned here wi'i'h models of

noninteractlng neutrons of the previous section, we note that the equilibrium mess

at lhe same central density _s much larger for the former than for the latter: more

than twice as large at the maximum point and about three t_mes as large at the

singular po;nt (when _c -.. oo)_ The fact tha_ the bindlng energy does not become

n_ga_ive in the present models suggests some complica_ed effect of nucleon-nucleon

forces. These results are summarized also in Tables 11a and 11b.
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TABLE 11a. Relativistic Skyrme-Cameron fype models with. P _ _ _ in medium
and high density regions (the symbols are those introduced in Tables 8 and 9).

log _c '1 pc
i %(cgs): og (cos)

4,947 34°662

",5',311 35,670

5°704
6_ Jo5

_6,,678

°7_72_5

"80726

9°678
_.bo597
21.496

36_478

' 37,173

37°795

3u °906
39.912

'40,,86i

41.778

42.625

' RCkm)

8b_3
8°768

0_4954

I o441
1.692

! I.',5_3 '
i " ' r&22 ] 1,329

&61Z., i 1.313,
6°627 I 1,,345

6,59_2 " ] ;'3-38

....&606 1_337

6,609 1o3L_U

M/Mo Me/Mo
' 0°5423 "b.0469'

i.726 ' o.285
2.0;z8 ........ 0.386

1.752

1.443

io413

1°457

1o¢40

1.438

1044o

00249

....O.U,4 ,,

0.095., !0.112
0.102

tnC

2_0

2,5

3.0

3,5

4°0
E'_5-"
6.0

7°0
'OoiOi 8,.o _

O, 102 %0

TABLE 1lb.

l irrdtaHon
Relativistic Skyrme-Carneron type models without re!ativlstic

P < _ (the symbols are those introduced in Tables 3 and 9).

I

I°glO_- 1cgs) IogloPicgs) } R(km) M/M e tnC

3°6974 31 °8256 0o0461 2 0,,04754

4.71 28 33_8841 [ 0,1 2523 I

4N470 34.6622 I 8o0t3 0°54228 2_0 i1&3854 35_8435 J 8,630 1.8724 , 2°6

5_6207 36,3276 I 7,945 !.6993 2°0890 i 2.9

53805 7o186 1o6336 1.9787

6oi 654
6°7830

22°44 1 ;vV'M°
6.325 0.12116

t O°495371 ,,5595

I

36,7672 t
37o! 733 t 6,.583

I

t 37o9132 j 6,.04¢
r 38°9058t
[ 40o1056
_ 40o9_43

707261

8o9! 99

9o770B

I 6.192
I

6_274

!6:255
96..55

&258

&259

Io5026 i Io7509

i, Io3043
! 1,3136

i !:3,6_5_.

J°2974

1,2584

1o2911

1o2886

1o2870

1_2877

I ..2880

20_5968 i 40_-7-779

Io3611

1o3583

I °3592
i 1.360

3°2

I 4.,1
J, ,

5_0

6°2
• '7_I

f "8°0

1i 9°2
i _o.1 '

2_o6741 ] ,4.2_8532

I
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\/lenoted in the previous chapter (!11-5) that pressure must not exceed

energy density so that the speed of sound will not exceed the speed of light. We

also noted that a potential of the Skyrme type does exceed the limit P = F.. as

-- co. To take this requirement into accounb the pressure calculated through

the relativistic Skyrme equation of state (3-39) was sw'tched over to the asymptotic

equation P = _ as soon as the pressure started to exceed the energy density. In this

way, curves marked (2) in Figure 32 were obtained. These show the relatlon between

central energy density and grcvltatlonal mass (solid curve) and central energy density

and proper mass (dashed curve)t with the relativistic limitation P < _'. Comparing

curves (1) with curves (2) in Figure 32 we see that _'he e_,Cect of the requirement

P< _: is eppreclable only for #.c > 1016o4 gm/cm 3 and that the asymptotic mass

(mass wiH_ infinite central density) with P< _ appears to be increased somewhat

from the value for nlodeis with the pure Skyrme equation of state (without the

ilmlta._ion P< _). The effec_ o_ the relatlvistlc limit is seen to discourage any

further change of ea,uiiibri_m mass in the same dlrect[on with increasing central

density. This general conc!us_on will be {:urther confirmed in Secy.'ion IV-41.

The radial dis_ribut.;on of tn(r ) (which spec'fies _,_.edensity distribution) and

that of mass M_ (or u(r)) of a typical model of the type introduced above (_he last

type with the relatlvlst[c correction P < C')_in the h._gh density region_ are shown in

Figure 33° This corresponds to a mode! with _-nc =6.3_ _ c =1019 gm/cm 3,.

pC_ 1040 dynes/cm2 M,_.1.,35 • and _",,,6_5 kin. The general shape of this kind

of curve is not only typical of Skyrme-Cameron type mode!s, but applies to almost

al! kinds of models ,_rom those o{: an ideal Fermi gas to the lllost complicated models
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of mixturesunder compllcated interaction forces, provided that the central density

is the same. For instance, the density profile in Figure 33 is similar to the one of

the curve (1) in Figure 36 obtained for a model of a Levinger-SJmmons type potential

vl3 applied to pure neutron gas. The conclusion Is that the shape of the density

profile (and also of the mass profile) is determined by the value of the central

density. This point is to be investigated later.

Some of the interesting properties of the final models of the Skyrme-Cameron

type are summarized in Tables 8 and 11a. Table 8 presents the results ob_alned by

Cameron and introducad in Section IV_-2f which are found to be identical with the

results of this section for E c < 1015 gm/cm 3 and Table !1a presents models con-

st._uct_d by the present writer in h_gher density region where all the required mod_-

flcatlons have been applied (P_ _ , etco). Those results will be compared, shortly,

with the other models of a real gas.

d. Neutron Star Models of _he Levlnger-Simmons Typ_

The next series of neutron sl-ar models have been constructed through the use

of the equaHon of s_ate i:or a real gc_sconsls_!ng of a pure neutron configuration in

which the interaction pote_':_als are of Levinger-Simmons type introduced in Section

)jj-4fo Because of the importance of _his type of model in the present research, !et

us review some of the conc!uslons of that sect[ono

structed in a parametric form, namely P = P(t) and

The equation of sta_'e was con-

"C= _(t). Both P(t) and _ (t)

consist of a kinetic energy term and an interaction potenHal tarm_ The kinetic

energy part denoted by subscript I(E is just the ._elativist[c expression for non-lnter-

acting parHcles
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6 = K (slnh t - t) (4-8)
KE

1 t
PK£ = "3 K(slnht-8sinh _ + 3t) (4-9)

The potential term involves the static and velocity-dependent parts of the ordinary

and the exchange in_egra!s v o , go ' Ve ' ge" v o and _'o are given in the

analytic forms- C 1 k 3 and C 2 kf 5 respectively, where C 1 and C 2 are constants,

and v e and ge depend on tile Fermi wave number kf in a compllcated way and

were solved for graphlcally. Three types of potential were suggested, vc(, vl3

and vl,, which depend on the different coefficienfs of the four terms introduced.

Due to a poor fit to the experimental data in the region of greatest interest, Vc_ was

simply discarded in the present research, and vp and v I, were used. The basic

properties of these two types of ;_otential are summarized in (3-51) and (3-52). it

will be recalled that v_ is a square well potential wi;'h a tail of the Yukawa type

and v 1' is a compiicai-ed comb;nan';on of exponent'ia!ly decreasing terms which in

effect gives rise to same kind of properties as vj3o The maior dif.:erence between

v_ and v,; is tha.+ the coefficients, especially o._ the repulsive terms, are much

larger for vy than for v13. tn low density regions (up to about _,"-,1013 gm/cm 3)

the di{:.rerence between the two is qui?e small as FEgure 24 indicates, but as the

repulsive tea-ms begin to domin_!'e over i'he rest, the poter:tial v_, goes up much

faster _han v13 : g_vi_g h!gher pressure at a given density_ Larger pressure a_ _'he

same density produces the possibility of a larger total mass o_ the s_ar, and we expect

larger masses to be c_ssoc'o_ed with v-y than wi._h v_ at the same central density.

This will be confirmed shorHy. These two potentlals of course do no;" exhaust all the

po_sibillties of in_eractlon l:orces, nor do they give upper and lower ilmits to the
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possible models of different nuclear forces. However, noting the highly different

behavior of the two in high density regions (the regions which are critical in setting

an upper limit to stable configurations)_ it is hoped that these two contrasting models

which are faTrly consistent with e:<perimontal data may represent the probable limits

of uncertainty of physical reality° Besides v _ and vl,, the straight average of the

two, v _ l,t was also used in constructing a third kind of model of the Levinger-

Simmons type°

We have seen that the Levinger-Simmons nuclear potentials are expressed

as a function of kf, but because kf is directly related to t through (3-30a) and

(3-47) the potential terms are express3ble in terms of t alsoo In th;s way, by

choosing t as the constant of integration, we may proceed to carry out the inte-

grations as before. However, due to some technical prob!ems it was concluded that

it is more convenient to choose po, the pressure at the center of the star in relati-

vistTe units, as tile parameter of ;n._e;rai'ion this time, Since the equation o; state

is expressed as a function of b it is s_mplest if P and _, (and _o m) are calculated

!n terms of t first. Therefore_ the following me_hod was adopt_d in the actual

in_egratlon: in a separcte subroutine, pres;ure_ energy density, matter densityt

number density, etc,, ar, d o_her related interesting quantities have first been cal-

cu!ated separately and then l_sted in terms of t, with t_e interval _t of O.G1,

extending from ;- = 0 to t = 16, which should cover a region far beyond the m¢ior

region of interesto The tcble of 1600 such sets of values was used as the input to the

ma.;n program° There,%res once P is speclfi_.d, the densities _ and fro' t, and

other interesting qucn_ifies were obtained by _'he use of the. interpolation subroutine
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operating on this input table. Except for this minor change of procedure, the inte-

grations were carried out in the same manner as outlined in earlier sections (IV-3,

a, b, and c). As before, the equation of state was switched over to P = _ as soon

as this asymptotic value was reached.

The results are summarized in Tables 12, 13, 14 and 15, and Figures 34, 35

and 36° In the first three tCbles the notation is as follows: po is the central

pressure in relativistic units (i.e0, c =G =41 - 1), pC is the same in dynes/cm 2 R

is the coordinate radius (or the observable radius), M, Mp, M B and M_B are

gravi_ational mass, proper mass, and two kinds of binding energy, respectively, in

solar mass units M@. t c is the relativistic parameter t of neutrons at the
n

center of the star. in Table 15, a and a2 are two kinds of packing fractions,

g44(R) and grr(R) are tlme metric and the radial component of the metric

g evaluated af the surface of the star_
Pv

_(_) is the gravlta_'ional red shift° To make the physical meaning of these quantities

(4..lo)

a = MB/M P ; a 2 =M' B/M
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TABLE 15. Neutron star models wlth

tables 8, 9 and !.0)_ ..
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(the symbols are those introduced in
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0.2865

0.00159

0,00790

0.0583

0.242

0.312

0.275

0.281

0.280
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is the total energy density, and pm

pure neutron configuration, where mn

number density).

n(r) is the total baryon number density at r.

Ivl=
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is the total matter density ( =mn nn for a

is the neutron mass and nn is the neutron

(= Mp/m n for a pure neutron gas).

(4-11)

The reictivistlc system of units is adopted unless otherwise specified. From these

definitions it is clear that M B is the binding energy wi_'h respect to the total mass

I

ba[ore it has been assembled as a star or the total blnd[ng energy; while M B, the

macroscopic mass defect, is the difference between the total mass in the absence and

in the presence of a gravitational field (no_e thQt in the absence of a gravitational

field, g = - 1 and M_B is zero): and [hu= it corresponds to the binding due to

gravlty only (with microscopic binding energies excluded).

We noted thai" M B , and hence a, becomes nega'_-ive when log _ c _ 16.7

for _n ideal gas (Table 10). Negative binding energies do also occur for models with

vj3 (see Table 12 and 15 or Figure 34), but the grav!faHonal masses are always smaller

than the proper masses for otl_er configurations (lee. for v 1" Vpl/" and the Skyrme

po[ential). An explanai'[on of this will be attemp;ed in the next sec_;on (.V-4;= For

the sake of comparison, it is more convenient to speak of the fractional bindings a

and a2 than of M B and MZBO For the ideal gas (Tabie 10), the maximum a is

around 0°07, while for v B., vt, r and vpy, i_' is 0.12, 0.15, and 0.16, respectively.
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For the final Skyrme-Cameron type models (Table 8 and 11 a), a goes as high as

about 0.2. The a1 obtained by Ambartsumyan and Saakyan for a real hyperon gas

behaves somewhat differently from those of vp • v 1, , v_ 1' and of the Skyrme-type.

Their a 1 was defined improperlyt especially for a mixture of hyperons• and this

may be a cause of the difference° a2 increases with the increase of central density

in all models, approaching asymptotic values of about 0.53 to 0.55 as _c -. co•

depending on the model. This means that in the high density limit, the macroscopic

mass defect due to the presence of gravity becomes even greater than half the

observc, b!e mass.

Values of g44(R) and grr(P,) in Table 15 reveal that even at the surface,

curvature of space due to the gravlt_tlonal field is quite large for some of the dense

c > 1015 gin/am3). The deviation of the metric fromstars (of central density _ m ,_,

the Euclidean me_ric is much larger for models of the Levlnger-Simmons type than

for models of an ideal Fermi gas° This is because the effect of the interaction forces

between nucleons (or baryons) is to make the ratio M/'R larger than for the case of

non-interactlng parHcles and the curvature depends on h'V'R through the gravltational

potential. On examining these tables, we see that the maximum curvature at the

surt:ace and the maxlmum red shift both occur when the central density is somewhat

higher than that corresponding to the maximum mass° For instance, for v 1, the

c 15o3e wh_le maximummaximum mass of about 1_94 M@ occurs when log _m _"

c 15.47. The solid curves insurface curvature and red shi{t occur at log _m

Figure 31 shows the central denslty-radius relation for a mixture of baryon gasese but

similar curves are obtained fer the models v_ and vy of pure neutron gases also.
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The general behavlor of the radius exhibited in F_gure 31 applies also to pure

neutron gases, except for the exclusion of the envelope effect.

The total baryon numbers N of the star are listed in Table 15. On comparing

the values in Table 15 with those given by Saakyan (Table 9), we note that the N

of all our models are much larger than those of his ideal gas models, and that the N

I. fl iIi
of the models V1, and VF 7 ore somewhat larger than those of n,s rea gas models,

i. I,, l//

while our models V_ and n,s rea, gas models have more or less the same values for

N. This is easily seen from the fact that for a pure neutron configuration N is iust

the _'otal proper mass divided by the neutron mass, that the proper masses of all our

models are much larger 4.han that of an ideal Fermi gas, and that these of our models

q ll Itl

V 1, and V[3 y are larger than 'i'hose o_ Saakyan's real gas models, while the masses

, . 11 I q

associated with our Vp models and ms tea, gas models are similar° A very inter-

estlng property of N is that wii-h an increase of central density, N firs_ increases,

reaching a maximum and then decreases; after reaching a minimum it increases

again a little, beforg reacb.ing a constant value at _ mc =co. \Vhen the to'_al baryon

number N is ploffed against to'i-al gravi,_ational mass M, _he gcnerai behavior of

Figure 5 in refcrence 15 _s also revealed for all our models; that is, an assembly of

N nucleons generally has one equilibrium configura;ion when j_ is smallar

than a certaln value, say _'_ 1; three equ._librium configu,_tions with dEferent values

o,_ M exist in the in_ermeJi_te region,_

in ?he higher N

sok, tions forN >N3"

region N 2 < N < N 3

<N <_2; two equillbr_um configurations

(where N$ >N 2 >NI); and no equilibr,.'um

Let us now i'urn to Figure 34 where the cen'_'_al densit7 of V_ models is
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plotted against total gravitational mass (the sol_d curve) and total proper mass (the

dashed curve) of the star. The maximum mass comes at about M ~ 0°98 MQ and

Mp ,-, 1.1 MO where log pm c ~ 15o96 and R ~ 5 kmo Then crossing of the gravi-

tational mass track and the proper mass track in the p mc - M plane occurs at

log Prn c ,,, 16.3e M,,- M o ~ 0o85 M o and _ ~ 4 krn. The central singularity

develops at M ~ 0.77 Mos Mp ~ 0.76 M G and R ~ 3093 krn° By using the same

argument employed by Oppenheimer and Voikoff_ we find that all the stellar con-

figurations in the upper branch of the big hump are unstable° Stable models lle in

the region 1015< < 10 !6pm c gm/crn 3. The second small maxlrnurn exists at around

log pmc N 17.4 and can be seen in Table 12 but is hardly no_'icable in Figure 34.

Nex'b let us turn to Figure 35 where the central mat'_er density of Vy models is

plotted against gravitational and proper mass (both dashed curves refer to pure

neutron stars). The maxlmurn masses (M ~ io94 M O and Mp ~ 2°3 Mc_) occur at

c
log Pm~ 15,3e where R,', 10.5 kmo A slngulaHty develops at the center when

M,-, 1_54 M_ Mp'-' 1.,62 Mg and _~ 7°° km_ Again the second maximum is

hard to see in this figure bu_ it is easily recognized in Tc_b_e I3. For log

,' with the same central density a!mosf coincide.models of type V_ and \ 1'

• _ "_" almost identicalshould occur is obv.ous _rom the fact that these two po.e.._: _als are

in regions of small density. A stri king result is tl_at the maximum mass ef Vy is

twice as large as that of V_. The rnaior difference between Vy and V_ lies in

the larger repulsive term _:or V7 which is due to the hTgher value of the coefficient

of '..'histerm° One important conclusion deduced from the above result is that one of

the decisive factars for dctermining the parameters of neut:on stars is the exact form

C
r:'m 13.7,

That this
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of the interaction forces betweenneutrons (or between baryons in the case of a

baryon gas).

It is interesting to compare these results with Skyrme type modelsl,Figure 32).

In Figure 32_ the central density refers to the energy density f c while that in

Figures 34 and 35 refers to the matter density pmC= But by inspection of these

figures we easily recognize that Skyrmets curve comes between the VI3 curve and

c
the V1' curve in the p - M plane° One maior dlf_:erence bel-ween the Skyrme

type models and those of the Levlnger-Simmons type is seen in the low density

region; namely_ in the former_ the minimum mass (about 0.02 M_) comes at log t0c

~ 14=5, while in the lah_er the minimum mass (at the same pc) is much larger

at about 0= 2 M®. This is seen to be due to the large difference between the

Sk,vrme potential and Levinger-Simmons potential in the region !014,_< p < 10 !5

gm/cm 3 covered in Figure 24° in this region the Skyrme potential has a much

larger attractive term which lowers the pressure cons.;derably and resul_-s in smaller

masses° For pc< 1013grn.,/cm3 V_ V1'IVp and Skyrmeall approach the

asymptotic line of non-;nteractlng particles in F_gure 24 and all models of the pure

neutron configuration converge to the same curve for pc < 1013 gm/cm3o

The V_ 1' models come nearly midway between those of V[3 and Vy o

Charac.*eristic features seen h_ other models of real gase; (V_, V I, _nd the Skyrme

type) are seen in the V[31, models also (Tables 1,_.Qnd 15)o The maximum masses

areM~ 1.65M® and M o~ !,93M_a_" pmC~

The. deviation of the VI3 _, models from those of V[3

gm/cm3o Another srn.al! maxlmum is seen at log pm c

10 15,5 gm,/cm 3 wi_h R ,'_ 8 kin,

takes place at around pc... 1014

~ 16o9o The central density-
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mass curves are not shown for the VOy models because they are slmiiar to the

final Skyrme-Cameron type models (Figure 32) in high density regions, while in

low density regions, they converge to other Levinger-Simmcns type models. The

central singularity develops for V_ y when M ~ 1.26 M@, Mp ,-' 1.3 M 0 and

R ~ 6,6 km.

To see the general _eatures of the density distribution within a star, the

density profile (in the form of tnC vs. r curve) of three different models of _'he

V_type with the low, medium and high central densities are plotted in Figure 36

and lab!ed (3), (2), and (1). Some of the characteristics of these models are listed

be!ow:

Models po

3x i04

Log pC C
Log Pm

i, (1) 41.23 20.33 17.41

,(2) 3 37.29 16.29 15.8

(3) 3 x !0 "4 33.29 14.28 14.27

Units c=_=G= 1 cgs cgs cgs

M R i

I°254 6o58

1.4 6.6

0.185 '15.1

/vi o

Mp tn
1.292 7.85

1°6 .3.7

0_188 1.24

M_ -

This graph clearly shows how the singularity is developed at the center at a finite

stellar radius and mass_ Wffh a further increase in the central densffy, the distortion

in shape of the type seen in the curve (1) becomes more and more exaggerated until

in the limit as p c -. co, we have all of the mat_er located at the center. It is very

hard to understand why such a configuration can s_ill possess a finite radius. However,

the present treafment of the problem may breok down before such a limit is reached.

We come back to the discussion of the difficulty associaI-ed with these singularities

later. The general behavior of density profiles exhibli-ed in Figure 36 (wh.:ch was

obtained for v_y type models of pure neutrons) with an increase of central density
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hasalso beenseen in all the other kind of models construeted in this research.

e. Composite Models of the Levlnger-Simmons Type

So far all the models constructed in this section had pure neutron conflguratlons,

that is_ they are "neutron star models" in the literal sense. In reallty_ we have seen

that such a gas is contaminated with other sub-atomic particles, whose kind and

concentration depends on the density we are dealing with. In highest density regions,

it is a mlxture of various kinds of baryons, mesons and ieptons. In lowest density

regions neutrons are not even allowed to exist and the equilibrium matter consists of

heavy nuclei and electrons° In the final set of models, the final composite equation

of state constructed in Section 111-6 was used. Before proceedlng, let us review the

conclusions of that section° The equation of state in the major reglon was expressed

as equations (3-73) and (3-74)_ the relativistic Levinger-Simmons type equations,

where in effect every;'hi_g was expressed as a function of a single parameter _n " As

soon as this equation of s'ate starts to violate the relativistic requirement P_ _., the

equc_tlon of s?ote wc_s replaced by the asymptotic equation P = E_, as before. In the

region p _ 1013°8 gm/cm3 we are dealing with a mixture of neutrons, ele:trons

and posltive _ons (as we lower the density, more heavy ions appear while proton

numbers decrease rapldly)_ When the density becomes less than about 1011o3 gm/cm 3,

the neutron concentration rapldly decreases to zero and the main pressure comes from

c_egenera_e elec_rons_ There is a tronsitlon region in this vicinity where the maln

pressure contributor changes from electrons to neuh'ons or vlce versa° In a stellar

interior the denslty decreases as we go radially outward and there is this transition

from the neutron phase to the electron-nucleGr phase at some boundary within the
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star. V/e call the interior part whose maior constituent is neutrons and other baryons

the'h outran core," and the outer layers of an electron-nuclear configuration "the

electron-lon envelopes" for convenience. In most of the previous models such

envelopes were simply neglected. However,

our results soon reveals that such a simplification is not justified. The final com-

posite equation of state in Section iil-6 automatically goes over into the electron-

nuclear equation of si'ate in low density regions, takes interaction forces between

baryons into account in higher density regions through a Levlnger-Simmons type

potential acting on all baryons, and transfers to the asymptotic equation P = _ in

the high density I=ml_-.

Up to p = 1013"86 gm/cm 3, the equations are expressed in terms of p and

thereafter in terms of t n . The general procedure employed was as follows: First,

from log p =0 to log p =13_86wlth the interval _(Iog p)=0o02; P, _, p, t n

and all other rela_ed quantities of interest (electron number densities no, baryon

numbe_ densities n_ par_ia_ densities and pressures oF components, etc. ) were calcu-

lated in the manner described in Section i!1-6o AI_ the parameters and quantities

absent at a given density p were set equal to zero (for instance, in the regions of

lowest density there are no neutrons and nn =fn =0_ e.;'c_). At the transition poim=

the value of t n corresponding to log p = 13..8 was used cs the inltic_l value and

ht..erea;-ter all quantifies P_ _r P _ etc., were c_tculated as funcf."ons of t n from the

initial t n to t n = 16, with the interval _t n =0°02. The equation of state thus appears

as an input" table which lists a set of values of P, "_ p _ etco, to the main program of

t- ._. !

k_tegration. Special care was t_ken to see tha_ evc, y,h,ng is continuous at log p =13.86.
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In the main program, the central pressure pO in relativistic units was chosen as the

parameter of integration, and for each P, the corresponding _, p, t n, eta., were

interpolated through the interpolation subroutine. In this manner the input table of

the equation of state was prepared. The step by step integration was carried out by

Adams' method as explained earl_ero Another major difference (besides the differ-

ence in the equation of state) is that the integration was carried out to the point

were log p = 0 (that is, p = 1 gin/am3). (Our equation of state now includes the

white dwarf region and the former method of terminating the in;-egration at log p = 8

is certainly no longer justified°)

The results obtained in this way explain the general behavior of dense stars

from the lightest of these (in the white dwarf region) to the densest (with infinite

central density). Some of the models obtained in this way are listed in Tables 16,

17 and 18o In the First, the various interesting quantitles introduced in the previous

sec_'ions are listed for composite models of the type vp, in the second, for composite

models o{: the v 1, type, _nd ;n the thlrd for composite models of the type of either

V{3 or V1' in the low density region where these two types of models are identical

because of the absence of nuclear forces. In the previous sect-ion, the same quantities

were calculated for models o_ a pure neutron con.lgura_icn with Vp , V1' and VJ31' "

To better see the effect of hyperons, pure neutron models of the v1' type

(dashed curves) and composite mode!s of _ype v1' (sol_d curves} are plo_ted _oge_her

in the toC-M plane in Figure 35. Here, the difference is clearly noticable. The

major differences are _'hat: (1) at the same central density, composite models have

c 5 cm3;smaller masses than pure neui-ron models near p < 101 gin/ (2) for
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TABLE 18. Composite models with VI3 or V7 in low denslty_gions.
(The symbols are those introduced in Tables 8 and 9.)
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& (cgs)log c

6. 28406

6. 95173

7.65431

8. 16160

8. 38262

8. 91258

9. 15375

9.71546

9. 95789

i0. 5214

!0.7643

11.7365

12, 3062

12.48

13.0070

13. 153

log 1o_(cgs)

6. 28403

6. 95167

7. 65416

8.16135

8. 38251

8. 91209

9. 15318

9o 7l'_6q

9.95692

I0. 5201

i0.7627

11.7319

12, 3021

12.47

13.0022

13. 1474

log pC(cgs)

22.8082

23.8082

24.8082

25. 5072

25.8082

26.5072

26.8082

27,5072

27.8082

28. 5072

28.8082

29.8082

30. 2853

30.51

31. 2853

31.5072

R(km)

3
go i0 ixlO

6.782xi03

4.842x103

3.72b'i03

3.299x103

2.465x103

3
2,185x10

' 3
i, 654xi0

3
i.449xi0

3
1,062x10

9. 234xi03

i 5,798x102

6. 748xi02

7°069xi02

3

i l. 300x10

I 1.457xi03

 /Mo

O. 42483

O. 66838

O. 90802

1,03641

1.07884

i. 14480

I. 13933

1.05234

0. 99789

13_-86027

0.80126

0. 52750

0.59651

0,5849

O. 56300

O. 56893

0.42599

0. 67001

iO. 90988

1.03827

1.08067

io 14480

i. 14079

1.05321

O. 99857

0.86067

0.80158

0.62765

0. 59581 e

e
O. 5840

0. 56176

I

0. 5677 i*
I ...... ..--'
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pC,_> 1015.2 gm/cm 3 the composite models have larger masses than pure neutron

models; (3) for still higher densities log pc> 15o8, the gravitational masses of pure

neutrons and composite models almost converge to a common valuer while the proper

mass of the composite models remains larger than that of pure neutron stars up to the

singular point (pc .. oo). The smaller mass of the composlte models in lower density

regTons is easily explained= In the region 1014< pC < 1014.Sgm/cm 3 the composite

models consist of neutronst protons and electrons. At slightly higher densities they

P- mesons as well, and for pc >_1015 gm,/cm 3 the appearance of hyperonscontain

and excited nucleons lowers the neutron number density appreciably as is seen in

Figure 21. As a consequence, the top of the Fermi sea of neutrons is lowered and

the partial pressure of the neutrons is depressed° Up to about log pC .., 15o3 the

partial pressures of other baryons are not sufficient to compensate for this decrease

of neutron pressure, and the over-all effect is to decrease the total pressure beJow

the value it would have in *.he absence of other baryons. Lower pressure results in

smaller total mass of a star with the same central density, as can be seen in Figure 35.

To explain the larger mGsses of compo._ite models as compared wifll pure neutron

models in higher density regions, it may be polnted out that in general the balance

between gravity and degeneracy pressure is acqL'ired at higher matter dens._ty when

the pertlc!es responsible for the degenerate pressure are _eav.:ero For instance, we

have seen that the electron degeneracy ;:ails to support the gravitational force for

pc> 108 gm/cm 3, while neutron degeneracy pressure is able to ba!ance the gravl-

rational force _n the .much higher density regions where 1016> pc_1014 gin/am 3.

We have also no'_ed that _h_ second cru-_hlng point (©ppenhelmer-Vo!koff mass limit)
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is the result of the farlure of neutrons to supply sufficient degeneracy pressure to

counterbalance the increasrng gravity due to increasing density. When some sub-

atomlc particles heavier than neutrons supply degeneracy pressure, this crushlng is

expected to occur at a higher density than in the case of pure neutrons as can be

predicted from the same anabgy used between electron degeneracy and neutron

degeneracy. As a consequence the stable regions of composite models (with heavier

baryons than neutrons) are enlarged to include h_gher density regions and the crush-

ing point occurs at a higher central density and, hence, at a larger mass° Due to the

relatively small difference between the masses of ground state nucleons and the

heavier baryons, _'hls effect is not so significant as in the case of the difference

between the neutl-on and electron configurations, but it is a_preclable enough to

increase the maximum mass point from about 1.93g to 1:98 e for the gravitational

mass, and from about 2°28 0 to 2o37g in the case of the proper mass when degenerate

hyperons become effective enough as pressure sup?orters. V/o have been discussing

only v y type models c:bove, but hyperons produce exactly the same kind oF behavior

in the models of type v_, a!so, from which it is canciud.?d that the. preceding indi-

cates a general effect oF hyperons on neutron stars° Sa_kyan's models also give larger

maximum mass for hyperon _s.a.s than _or pure neutron SL_:_S. \:/hen all particles become

relativistic I_he kinetic energy much larger than the rest mass), the mass difference

between particles becomes insieunificant because Fermi energy and pressure ._ken

depend on number density but are independent of mass. This conditicn, however, is

nat reached until the to_al matter density reaches about l0 ! 7 gm/cm 3 (EF =mc2 for

a neutron gas at log pc ~ 16_5), far beyond the c_ush_ng points of either pu._e
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neutron stars or hyperon stars. Before this point is reached1 the equation of state

switches over to the simpler form P = _. That there should be a large divergence

between the dashed curve and the solid curve in Figure 35 for densities below

10 !4 gm/cm 3 is obvious from the fact that in the composite models the electron

partial pressure is becoming dom|nant, and with the rap_d decrease of neutron numbers

with a fall of density the total pressure of the composite models is much larger than

that of pure neutron stars due to the presence of electron degeneracy. In effect,

q.-alltativelyt we see that the difference between the solid curve and the dashed

c 14
curve in the region p < 10 gm/cm 3 in Figure 35 gives a rough measure of the

proportion between the neutron core and the electron-ion envelope. For pc< 1011

gm/cm3t the neutron core completely d_sappears and we tend toward white dwarfs

as the density is further lowered.

A complete set of cemposite models is exhibited _n Figure 37_ I th_nk it" to

be extremely _n_erest_ng to compare this result whh _hat of \'/heeler in Figure 26

and of Salpeter in reference 12o The general agrearnen. _ between ._he present models

and those of Wheeler and Sa!pe_er is satisfactory _n the whi_e dwarf reglonso Wheeler's

models give a maximum mass _f about 1o2 _ in the wh|_e dwa:f regions. That of

Sal_ef, er ranges from about 1 to 1_4 gl depending on different choices of composition.

The maximum white dwarf mass of our models is about 1.2_, about the same as

Wheeler's, but it occurs at a somewhat higher cen_'ral density (~ 109 gm/cm 3) than

8.5 gm/cm3)_WheeleHs (--, 10 Our models come in about the middle of the various

models of Salpefero On comparing the equations of sta_e used by Salpeter, Wheeler

and by the present wrltert i_" is obvious that in _he whli'e dwarf regions, !'hose of the
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first two are by far the more complicated and precise. In my models, the more

thorough and elaborate treatment of the variation oF composition has been applied

but all the various correction terms which Salpeter took into account in the non-

interacting Fermi gas of electrons are not included. Wheeler neglected such

correction terms in the Chandrasekhar white dwarf regions, but his equation of state

in the lowest density limit (around atomic regions and solid state regions) is much

more elaborate. The conclusion is that for some of the llghtest white dwarfs (with

the central density < 104 gm/cm 3) for which low density effects and the corrections

of Salpeter and Wheeler become appreciable, their models are more accui'ate.

However, the main topic of the present research is "neutron stars" not "white dwarfs,"

and it is not my purpose here to inves_-igate the detailed struc'ure of low density

white dwarfs° Therefore, models with central density lower than 106 gm/cm 3 are

no.* included in my resull-So The main purpose for carrying out the calculations down

_o lower density regions has been to show that the while dwarf regions and neutron

star regier, s are joined smooi'hly by one curve, which shows two maior crushing points

(one, ChandrasakharSs and another_ Oppenhe_mer-Vo!kof._s)r wlth_ut any special

as_umptions_ An effort _long ,_he same ilne was made by Wheeler, but the major

c_f{'erence between Wheeler_s models and mine is that i kave treated the neutron

star regions and the subsequent regions oF superdense s_-arsmuch more fl'.,oroughly.

Whee!er's results for p_ 1013 gm/cm 3 are quite uncertain due to overslmplifi-

ca;-iens in his ec_uafion of s_a!'e in the he_gher density region. Sa!peter's main

contribution is also to the s_udy of white dwarfs° Salpeter_s neutron star mode_s

c_re bQsed on: (1) Newton;an mechanics and (2) the non-rela!'iv_sfic Skyrme equation
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of stater which causes some uncertainty in his results. But one important result of

Saipeter_s work is that it pointed out the possibility of a non-negllgible contribution

of envelopes_ which is ccnfirmed in the present research°

In Figure 37_ solid curves represent gravitational masses of models of type vj3

and vy _ and the dGshed curves their proper masses_ In superdense regions the

crossing of a solid by a dashed curve does not occurt but an interesting result is that

such crossing does occur in the lower density region around 1012 < pc < 1014

gm/cm 3. This is explained as being an effect of the relaHvlstlc electrons as wi II be

discussed further in Section iV-4. It may be noted that the proper mass does become

less than the gravitational mass _n the h_gh density limit for v_ type pure neutron

gases /Figure 3L:.)_bu_ Figure 37 indicates that this is not the case w,th composite

models of the same type. It is _nterestlng to note that the presence of hyperons prevents

the binding energy from Lecoming nagaHve. In thTs grapht the last small mass maxi-

mums near 10 i7 gm/cm 3 are seen more clearly than in the earller ones° This hump

has been called "the second hump" in prev'ous d.Tscuss;ons_but the whole picture ex-

hibited in Figure 37 may suggest thab strictly speaking, this is the 3rd rnaxlmurn_ The

first maximum is the Chandrasekhar maximum mass near pc ~ 109 gm/cm 3 the second

maximum is another maior one_ the Oppenheimer-,Vo_koff maximum mass_ and the 3rd

one is a small hump near 1017 gm/cm 3 at the neck of the vertical asymptotic lines.

To bet._er compare my composite models with those of Salpeter and Wheeler_

central density has been plotted against radius in Figure 38 for each model. Up to

log pc _, 11.5 the agreement between these three kinds oi: models is quffe good° This

indicate_ that the absence of various correction terms in the electron equa;'ion of
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state is perfectly justified for my purpose (for pC > 109 gm/cm3). In neutron star

regions, Salpeter's second peak is much sharper than the rest, but all four kinds of

model (type vj3, type vy, and Salpeter's and Wheeler's shown in Figure 38) show

the effect of the envelopes° At this critical density, the envelopes of Salpeter's

models extend even to the slze of some of the largest white dwarfs; those of ours to

ordinary white dwarf size° The size of the envelopes in Wheeler's models appear to

be much smaller. /viost of the models with large ex'tended envelopes lle in unstable

regions (IV-4b) and may not be of physical importance, but our final results (parti-

cularly Figure 41 to be shown in Section IV-3f) indlcate that this statement is not

necessarily trues

To better see the dependence of the radius on the central density in neutron

star regions, the same relation is plotted on an enlarged scale in Figure 31 for

composite models of VI3 and V 1, , as well as for the models of an ideal gas obtained

in Section IV-3bo The radii of the V_ and V 1, models for pC < 1015 gm/cm 3 are

much larger than those of ideal gases° This is because in the !at_er, only neutrons

are included, while in models of the V_ and V 1,

poslte equation of 5._ate for electron gases was used°

type considered here, the cam-

We expect quite an extended

envelope in models with central densities in this region. This graph indicates that

the effect o_ nuclear farces and hyperons on the stellar radii is not as significant as

on the mass_

The mass-ra.d_us relation is shown in Figure 39. Here the portion marked (I)

belongs to the white dwarf reglons_ Around the region marked (11) lie a series of

models with extended envelopes. The model with _'he mast extended envebpe is
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shown by the cross marked with its central denslty value log pC = 13.56. Figure 27

shows Wheeler_s results_ On comparing these two graphs, we see that the envelopes

cf Wheeler's models are much smaller. In i'he lower portion marked (iil) lie a series

of neutron and hyperon stars. The dotted curves represent Ambartsumyan and Saakyan_s

models; the branch marked (a) indica,_es their ideal gas models and that marked (b)

• " _' astheir real g models° The branch (a) of the dotted curves and the graphs shown in

Figure 27 all refer to ideal gases and are similar to one another. W_th an increase

in central density, we come down from the region (I) to (ll'_ and finally to (!!_)o Due

to drfferent assumptions of interaction forces, in reg.:on (111) the curves branch off

to different individual types of models, first reaching a minimum radius, then in-

creasing slightly, and f_nally_ each branch approaches a point with constant mass

and radius as the central density goes to _nflnity. The center of the curl of each

kind of modeb thereforet gives the radius and mass of the extreme model which has

the central singularity. We notice from this graph that Ambartsumyan and Saakyan's

real gas models resemble the V_ type models more than the V1' type_ Larger mass

values are associaled wlih Vy and V[_ 1' than with V_ and Saakyan's mode!so

it was pointed out in the last chapter that the absolute Iimlt of _he equation

of state is P = _. However, there is not yet rigorous physical proof that the state

P _ _/3 is actually reali-'-ed. Thcrefore, it appears worthwhile to calculate model:

with the more restricted limit P< _,/3 as the asymptotic equation instead of P< _'.

The results are shown in F_gure z_0, together with the previous rnode!s which have

P = _ as'the asymptotic equation° Agaln the solid curves represent gravil'ationai

masses and dashed curves the proper masses. The crosses represent the points where
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pressure saturation takes place, namely, where the pressure becomes equal to

or _/3. The pressure saturation occurs at lower central denslties for P_< _'/3

than for P _ (_. The requirement P< _/3 results in sllghtly smaller maximum

mosses and in smaller niasses at the singu!ar point° But otherwise, the effect is

• rsmall. In particula, most of the models lying in lhe stable branch (almost hori-

zontal portion of the curve below the Oppenhelmer-Volkof. crushing point) are

unaffected by the change of the asymptotic equation of state from P = _ t'o P - &/3.

The internal structure oF a model depends on wllich type of model we have

in mind. For V_ type models the fo!lowlng applies: The lightest stable neui'ron

stars have small hyperon cores at their center, an intermediate layer of neu_.rons
(with a small an_ount of protons and ieptons), and rather extendecl outer envelopes

of heavy nuclei and elec_-rons; medium welgkt s_ab!e models have hyperon cores

occupying about 1/6 total siellar size wlth large envelopes of neutrons while the

outermost electron-ion envelope is negligible; the heavlest stable models have most

of their mass in the concentrated hyperon core whose size increases rapidly with

increasing central density° Models with _m c _ 1016 gm/cm 3 are malnly composed

of hyperons, w._th thin neutron envelopes. Due to the lower central densitles en-

countered, the Vy lype models in stable reglons have smaller hyperon cores and

larger neutron enve!opes_ The Iiglltest stable neutron star models of the Vy type

possess no central hyperon cores but have larger electron-nuclear envelopes than

those of type Vp.

The major differences between the compos,te mode!s and ._he pure neutron st_r

models may be summarized as (1) the composlte models have larger masses and larger

radii in low density regbns (c < 1014 gm/crn3) due to the eleciron-lon envelopes,
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(2) the composite models (V_ , V_, and V_ 1, models) do not possess negative binding

energies in high density limit due to the presence of hyperons_ (3) the composite

models have slightly smaller masses in most of the stable regions due to the presence

of other baryons_ (4) somewhat larger masses exist for the composite models in higher

density regions due to the effect menHoned in (3). The consequent difference in

physical properHes can be seen in Tables 16-18 as compared with the I_stings of

Tables 12-15. In Tables 16-18 the proper masses which are less than the correspond-

ing gravitational masses in the tow density region where 1012 < _c < 1014 gm/cm 3

are marked with asterisks°

f. Final Models of Stab!e Neutron Stars

Noting that the mcde!s constructed in the preceding section are the most

realistic at presenb three from the V_ and another three from the V 7 type were
,.one

selected as models to which envelopes were fitted/near the maximum poinb another

from the region of m_nimum mass (among stable models) and the third from the inter-

mediate region. We have noted that the difference between baryon s_'ars and pure

neutron stars of the same type (V_ or VI,_ etc.)t, is relatively smalb and that the

Skyrme models_ the Lev_nger-Simrnons models of type \_ l,t and the Ambartusmyan-

Saakyan models of real gases all lie between the V_ and V 1,type models° Therefore,

on selecting one model at the upper_ one intermediate and one at the lower extreme

from each of the two types Vj3 and V1,_ we may sa._gly assume, that these slx models

represent {:airly extreme poss_biIities for neu;-ron stars not on!y of the restricted kind

of Levinger-Simmons_ but also, more generaily_ o.+her possible models using different

kinds of potentials. To obtain better values o{: the model parameters_ M_ R_ etco_ the
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integrations were carried out again for these six models using closer intervals in the

interpolation table used as the equation of state (that is_ the intervals of t n and

log _ were reduced From 0.02 to 0o01).

The characteristic properties of the six models are summarized in Tables 19,

20, 21 and Figure 41. For convenlence_ in the following discussion the various

models are represented by symbols_ in the scheme adopted, (1 M_ t V_3) would, for

examplet refer to a model of about 1 solar mess (the maximum mass) of the type VI3.

Models are also designated by V_ 1" Vfi lb etc._ V_ indicating the type of model

and the symbol ! indicating stable models wi_h the maximum mass, II wi_h the

intermediate mass_ and III with the minimum mass of that group. The same notation

as was introduced earlier is used in Table 19. The so far undefined symbolst such

as Cv/T (specific hen! per unit temperature)t etc.t will be explained later when

such quantities become necessary° In the last four rows, M c represents the mass of

the neutron core and Rc the radius of the same core (in the table_ they are expressed

as the fraction of total mass and radius respectively); and

the following quantities:

c M/a

go (_) and g(R) represent

go(_) is the New_onian gravltatTonal c_cce!eralion and g(R) is the general

relativistic analogue on the surface of a neutron star_ log g on the surface of the sun is

around 4_ that of a typical white dwarf is around 8, and we not/:ce in Table 19 that

log g ranges from about 12 to 15 on the surface of neutron stars. This also indicates



TABLE 19. Detailed parameters for neutron star models. 271

TYPES V!;_

OMo,Vp)

M/_% 0.9386

R(km) 4.833

15.9o18
i '=
!GgM/RC 2 O. 285

io --_ .......]'(cg_'T V) 29.6811

_o ..... iZ'/1307

VI3 II

(0.6MoV,_)

0.5992

5. 658

15. 0379

O. 156

29. 6169

0.6593

0,1926

10.091

V1,1 V 7 II

(I .I Me, V i,)

i. i055

13,032

) (2Me, V 7)

i. 9765

9. 086

15. 3944

0. 301

30. 1426

2.3722

15.2388 14.8380

0.0282 0.125

29. 4078

0. 1949

30. 1594

1.1975

V1,111

(0.2Me, V 7)

0.2150

24,154

].4.2143

0.0131

29.9572

0.21686

I

M_M o 10.1921 0.06012 0.00227 O, 3957 0,09198 0.00189 i

i a 0.0915 0,0117 0.167 0.0767 0,0087

:_._Lc_s)_.___........................................................
i'°glcPas I --_0. 6533 35°8082 34,6533 36.2853-3 ;I-1-80-8-2.... 332853
!,_..._L_L_Z.......L.- ............................... "

o * 139__2.7" ................. 9_699529o2098 - , - -
c _- '...... Iit" ......

g44 (?') Jt ti,_30.... 0 :688 ..............0. 944 "-0.............398 J ....0.................750 "-0........................974 '

"grr (R) 12,32 1.45 1.06 2.52 1.33 1.03

Mc/M I _ 1 O. 996 _ i "_"1 O. 994

R/R 1 ,'v 1 O. 755 ",- 1 ,_i O. 607

I .....go(R)(cg s) 5,31x1014 2.48x1014 2_52x!013 2.79x1014 8.64x1013 4.°8x1012

g(R)(cgs) 11°23x1015 3_60x10 lg 2.67x1013 7.05x1014 101SxlO 14
5,04xi012
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for the model Vy I.

Model Vy:l: (2 Me, V1, )

r (kin) u(r)/M u(r)/r

1.061

2.020

3. 010

4. O06

5. 011

6.009

7.008

8.002

9.001

9. 686

u (r)/'M 0

O. 9199x10 -2

O. 6076xlO-1

O. 1859

0.3974

0.6890

1,029

1.381

i. 698

1. 921

j l,_ 977

O. 5897x10 -2

-1
O. 4115xi0

O. 1460

O. 3315

O. 6211

1.009

1.470

1.938

2.229

2.372

0. OOq 65

0.0338

0.0941

1.28xi0 -2

0.0442

0.0911

2u(r)/r

2.56xi0 -2

0.0884

0.1822

O. 201

0_348

0_520

0,700

0,859

0.974

1.000

0.146

0 o202

O. 252

0.292

0.313

O. 313

0.301

0.292

0. 404

0.504

0.584

0.626

0.626

0.602

TABLE 21. Radial distribution of mass for models V_l!l and Vy !!!_

Mode_v8 Ill (0°2tv,o, _ ) i
r(km) I u (r)/M©

2.07

3.00

4.00

6.00

"_ 7.60

9.00

lO.091

0.0298

0.0733

0.1292

0.1845

0,1919

0.1921

0.1926

O, 154

Oo 380

0,670

O. 959

0.996

0.999
.!

io000

Mo.ddvy Ill (0.2M_, vz)
r

0.0208

0o0601

0.1157

0.1686

0.2017

0.2129

0.2150

u(r)/M

0,0965

0.280

0.537

0.785

0.936

0,990

1.000
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that the general relativistic corrections are significant even on the surface if the

neutron star is massive enough (the last two rows in Table 19). g(R) is more than

twice as large as go (R) for models Vtb T and V1, I, though thelaq- _Lol is less

than 10%o of the Newtonlan value go for the Iightest stable models1 V_ ill and

Vy !11. Thls information is quite useful when we come to the discussion of the

atmospheres of neutron stars. The curvature of space and the red shifts are relatively

small for our lightest models but are quite large for the heaviest ones. All these

results point out the importance of general relativity in the problem of neutron stars.

We noto that larger values of mass and radius are associated with v7 type models

than Vj_ type models_ and lower central densltles prevail in the former than in the

latter_

To examine the internal structure of fl_ese stars in more detaib the radial

d_strlbutlon of densffy inside the star is shown in F;gure 41. ivbdels of type V1, are

represented by dashed curves and those of type V_ ky solid curves. Different

models in the same group are specified by their masses. An interesting thing is that

the effect of the electron-lon envelope is neglig|ble for the heaviest and medium

weight models of bo'-h groups_ but it is significant for the lightest models1 especially

for the model (0_2t_g, V1,) due to the small central density associated with thls model.

All these models have been selected from the stable regions. That the proper mass

is larger than the gravitational mass (so that the stellar configuration is stable against

dispersion to infinity) has been checked° The general assumption that the electron-

nuclear envelopes are negliglble for stab!e neutron s|-ars has been found to be inva!id.

This is shown in what follows_ The radius of the neutron core is about 75% and 60% of
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the total stellar radius for models Vp !il and Vy lib respectively (the third row

from the bottom in Table 19). Also, the results of the last two sections indicate that

the radii of the stable models of minimum mass of the types V_ and V1, are about 8.5

km and 14 km_ respectively, when the outer electron-lon envelopes are neglectedt

as compared with 10 km and 24 km when these envelopes are included. By neglecting

the envelopes_ therefore_ we wiJl introduce the error as large as 15% to_0% in the

value of the radius of some of the Iightest neutron stars.

To see the effect of the envelope on stellar masses, the internal distribution

of masses is shown for the two 17ghtest models V_ I11 and Vy I!i in Table 21 and for

the heaviest model Vy ! in Table 20. The boundary between the envelope layers

and the neutron core is marked by an asterisk for mode!s V_ ill and Vy III for which

such envelopes are appreciable. 99.6% of the mass is contained in the core of

modal V Illt while about 99.4% is in that of model Vy I!1. That is, in spite of the

large extended envelope_ the mass contained in the envelope is only about 0.5%.

The effect of the envelope on mass is negligible even for the llghtest stable neutron

stars.

As we shall see in the next chapter_ one of the decisive factors in determining

the surface con dltion of a star is the gravltational acceleration g on the surface

which is proportional to the ra_-io M/_. That is, by neglecting the heavy-n uclei

envelopes we are iiq_roduclng errors from about 25 to 60% in our surface pararneters_

especially on the va!ues of red-shlfto As a consequence, for instance_ if the results

of the last section (for a pure neutron configuration) were usedt quite a different

result for the possible behavior of cooling times, etc., ofllght neutron stars would

be e×pected.
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We have noted that the radial component of the metric becomes infinitet

and that we face the Schwarzschild singularity if the factor 2u (r),/r becomes equal

to or greater than 1. To check that our final models do not lead to this difflcultyt

the factor 2u (r)/r is calculated at different radial distances r from the center.

Such values for the heaviest stable model Vy][ are listed in the last column of

Table 20. The maximum of about 0.63 is seen to occur at about 10% of the radial

distance inward from the surface. For all of the other five lighter models_ the values

are less. Our last six stable models therefore do not exhibit the Schwarzschild

singularity.

It may be noted that the proper mass is smaller than the gravitational mass

from the center up to a certQin distance from the center, in this region the total

binding energy becomes negative but the larger positive binding energy in the outer

half of layers is thought to keep the body stable as a whole.

IV-4 DISCUSSION

in this sectlonr some of the key points of the results will be summarized and

explored further.

a. Chandrasekhar Mass Limit

We have noted that in the simple white dwarf mode!s of Chandrasekhar, the

solution of the equations of hydrostatic equilibrium gives a finite mass (called

"Chandrasekhar's maximum mass") as the central density goes to infinlty_ and that

there is no solution for more massive degenerate stars. This is easily explained by

some simple reasoning (as given in/,,ppendix 3). That is_ inside a white dwarf star,
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the gravity is supported by the pressure supplied by non-relativlstic degenerate

electrons. This pressure depends on the mass and radius through the density (A3-3),

while the gravitational force also depends on mass and radius (A3-2). The dependence

of these quanti,'ies on M and _ is such that when the gravitational force and the

pressure force are equated to each other to fulifii the hydrostatic equillbrlum con-

dition, a relation is gotten between the total mass and radius of a star under hydro-

static equilibrium (A3-7). That is, a star of a given mass can take on only a flxed

value of R as determined by this relation. This argument no longer applies when

the density becomes so high thr, t the electrons become relativistic, In this case the

pressure dependence on density (and hence on M and R) is such that when the

condition of hydrostatic equilibrium is applied, the radius term is eliminated (Eq0

(A3.-8)) and there exists no fixed radius for a given mass_ The Chandrasekhar mass

limit occurs when the degenerate electrons become relativistic. Therefore, a

degenerate star more massive than this limit has no way of adiusfing itself to become

a stable star unless some cai'astrophlc events such as nova and supernova explosions

can eject its excess mass into space so that it can finally end up as a stable white

dwarf with a mass smaller than the Chandrasekhar limit, or else that the increase in

the internal temperature due to contraction can succeed in causing encu_3h of the

star to become non-degenerate.

It has been shown that instead of developing a singularity at Chandl"asekha_'_s

critical mass, the so!ution of the hydrostatic equct_.ons with a more realistic equation

of state gives a turning point at a finite mass, radius and central density of about

1o2 M_, 2 x 103 km and 109 grn/cm 3 respecHve!y _due to the inverse beta
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processes)land that the solutionswith higher central densities lie along t_e curves

shownin Figure 37above the first turning point.

be Problem of Stability

The problem of stability has been discussed frequently in the last sections.

We shQIi now look into this point in more detail, A sl_ar_ as a stable mechanical

system1 must first of all satisfy the hydrostatic equ.;iibrlum condiHono Therefore, if

the hydrostatlc equations (1-1) and (1-2) or (1-8) and (i-9) fall to give sclutlons,

it means such configurations do not e:,ist as s._able bodleso An example is a degen-

erate star exceeding ,*he maximum mass of the Chandrcsekhar or Oppenheimer-

Volkoff type° Consider a star lying on the lower portion of the curve in Figure 37

before the first turning poln_= Such a star co.-responds ,*o a body in which gravity

is supported by the degeneracy pressure oF non=re!a,*'vis_ic electrons under ,*he

condltion P,=const M -1/3 (A3-7), If because of some perturbation a star of a

given mass M happens to have a larger R than that given by (A3-7) it will

contract to the right size_ while if it happens to be too small in size it will expand

until the condition (A3-7) is fultMied= In this way the star c_n adjust itself _o the

stabi!i_-y point agains_ external disturbances° I; _'his condition is satisfledt _he siar

is said to be dynamically stable as well as being in a condition of hydrostatic

stability. A reab stable star must satisfy both conditions of s_abili.'y_ namely, ,'he

hydros'i'atic and the dynamic ones°

The stars lying along the branch between the first turning point (Chandrasekhar:s

crushing point _t around c ~ 10,0.gm/cm3) and file next turning point (near
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_c,,, 1014gm/cm3), and which belong to the intermediate region between the white

dwarf and neu|-ron star models, are unstable in the following sense: They do satisfy

the hydrostatic stability conditlon(being solutions of hydrostatic equations)_ but they

are not stable agoinst dynamical disturbances. Let us suppose that such a star exists.

Should a slight disturbance be given to itt it would contract a little° In this regiont

the higher density resulHng from contraction does not raise the pressure sufficiently

(because some electrons to which pressure is due will be lost because of the in-

creased rate of electron capture at the higher density)° The gravltyl howeveb

increases with the increase in density, The pressure thus fails to support the increas-

ing gravity wiih cn increasing density and the contraction contlnues_ becoming more

and more rapid once it is initiated by the slightest disturbance until the star becomes

so condensed that i# reaches the stable branch for neutron stars, In the same wayt if

the slightest disturbance produce a small expanslon_ the pressure does not decrease

sufficiently to not over-balance the gravity whlch_ of courser also decreases because

of the expansion° This is becauset with a decrease in density_ and hence a decrease

in electron Fermi energy_ more free electrons will be liberated. Once begun_

thereforet the expansion continues at a higher and higher rate so that it soon reaches

the stable branch of white dwarfs.

A similar argument may be applied to the upper and lower branches in the

neutron star regions (1014< ec < 1017 gm/cm) in Figure 37° In this caset however_

it is not electrons_ but neutrons and other baryons wh,ch may be crushed out of

existence, A more rigorous approach to the dynamical s-_ability of stars in the

category of genercfl relaHvity has been recently given by Chandrasekhar(65) and
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it has been applied to the problem of high density behavior and dynamical

stability of neutron stars by Misner and Zapolsky. (24'61) The result is the same as

that estimated by Oppenheimer and Voiko_:f, namely, that between the two branches

around the Oppenhelmer-Volkoff crushing point, the stars lying along the lower

branch (in Figure 30) are completely stable while those lylng along the upper branch

are dynamically unstable° Even if a star along the upper branch is created by some

maglc, the slightest perturbation will cause a transltlon to the lower branch (expansion),

or if it starts to contract, it will contract indefinltely.

c. Oppenheimer-Volkoff Mass Limit

All the models constructed and the approximate analysis applied so far point

out that this second crushing, or the existence of the second maximum mass, is also

inescapable, as is that of the first Chandrasekhar maximum mass. No stable stars

with mass exceeding th_s limit eHsto For models with non-lnteracting particles, this

maximum mass has been shown to be about 0°7 M(_ while it is increased to as much

as 2 solar masses in some of the models of real gases (e.g. VT). We do not know what

is going to happen on superdense stars whose mass exceeds this limit. We have to

rely on a non-static approach in dealing with such problems.

d. Fate of Stars Exceeding the Maximum Mass Limit

The fate of massive degenerate stars exceeding ChandrasekhaHs limit has

been discussed and investigated to a great e_'tent in the past, and these investigations

have produced the basis of most of the theories of formaflon of whil'e dwarfs by loss

of mass° The fate of neutron stars with mass exceeding the Oppenhelmer-Volkoff mass
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limit has been speculated upon ever since the existence of this limit was first con-

firmed by Oppenheimer and Volkoff. The first theory is due to Oppenheimer and

Snyder (6) who investigated the problem with the simplified assumption of the equation

of state P = O. _ecently t in particular, the dynamics of a collapse of such a body has

been a hot issue among people in relativistic physics and astrophysics. Various contri-

butions toward a solution of the problem of the fate of massive stars have been given

by authors such as Wheeler, Cameron, Chlu, Fuller, Fow!er, Hoyle, etc. (cog.

references 8, 9_ 17_ 29, 32t 33, 60 and 66). This interesting topic however goes

beyond the domain of this research, and ! shall only mention that (1) iF one looks at

the problem as a matter of principle, it poses serious paradoxes such as the non-

conservation of the baryon numbers_ while (2) if the problem is taken as a matter of

phenomenon, various possible means of ejecting excessive mass can and have been

speculated upon (as has been done for stars with mass exceeding the white dwarf

limit), which would enable a star to finally become a neutron star within the mass

limit.

e. Existence of the Third Maximum Mass

In most of previous work, the methods commonly adopted were to carry out

the integration up to about pmc,,, 1017 gm/cm 3, and then join this smoothly to one

asymptotic model of a central singularity. Therefore, the exact behavior of superdense

stars wi_h _m c > 1017 gm/cm 3 was not determined_ in carrying out integrations for

ideal gas models in these superdense regions, this writer was first disturbed by the

fact that the expected singularity (a straight vertical llne in the _.C-M plane) was not

seen when the integration was carried out up to a limit as high as _.c ,,, 1019 gm/cm 3.
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To settle this questlont the original domain of the equation of state (from tnc =0 to 8)

was enlarged (to tn c = 16), and the integrations were repeated with central densltles

as high as Cc ,,, 1024 gm/cm 3. Then flnallyt the smooth approach to the singularity

(the vertical llne in the _c hA plane) was observed (Figure 30) as expected. The

result is that before approaching the singularityt there is another small maximum at a

central density ~ 1019"4 gm/cm 3 above the Oppenheimer-Voikoff critical point.

This third maximum belongs to the reglon which was found to be dynamlcally

unstable in previous investigations. However_ it is reported (24) that the s_abil_ty

problem at the third maximum cannot be analyzed by the simple methods employed

(_@,1
earlier and Wheeler suggested that this peak might be checked by extending the

variational method to terms of the second order. The result of such a check may tell

whether the third peak has any physlcal slgnificanceo

f. Central Singularity

From Figure 36, we have a glimpse of how the central s,ngularlty may be

developed for a star of finite mass and radius. The tendency seen in the curve (1)

in Figure 36 becomes more and more pronounced as the central density increases.

Above a certain value (just after passing the third hump), the mass and radius of a

star seems to stay almost constant with increasing central density; the only change

being that of the internal distribution of matter, The N baryons which have been

spreading over the whole interior of the star seem to assemble more and more at the

center, and this readjustment of internal distribution of matter seems to keep the

apparent size of the star fairly constant_ until at the extreme (_c = co) all N baryons

gather at the center, leaving nothing elsewhere in the star.
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The existence of a centralsingularityhas been predictedby variouspeople

with various analytic approximations all of which point to the inescapable existence

of thissingularity.The major difference between differentmodels isin the values

of the radiusand mass.

An interestingcommon property of models with i_c =co isthat the time

metric at the center vanishes. Equation (1-38) in Chapter ! gives an expression for

2M _c h 2 tn(r) _-1the time metric inside a star (r < PO; g44(r) = (I - T ) os 4 '

where M and R are the total gravitational mass and radius of the stellar configu-

ration and tn(r) is the relativisHc parameter of neutrons at a radial distance r.

Especially at the center tn(O ) = co for such stars and i'he cosh term becomes infinite,

giving the value zero to g44(0) For any comb_;natlon of M and Ro The vanishing

of the time metric implies that for a distant observer the phenomena occurlng at the

center of such a star proceed at an infinitely slow rate.

go Schwarzschiid Singularity

In Chapter It Section 4d, another type of singularity was introduced which

is inherent in spherically symmetric bodies of the Schwarzschild type, namely, those

where the line element is expressed in a form as given by (1-26) and (1-30). This

singularity develops on the surface of radius RG =2 G/v_/C 2 called the

gravitational radius. The time metric vanishes and the radial component of the

metric becomes infinite on this surface. Thereforet it takes infinite Hme to cross

this surface and due to the infinite curvature or: space theret the light emitted from

this surface will never reach us. Even though it was pointed out in Chapter i i hat

the Schwarzschild singularity seems to be a coordinate singularity (in the sense that
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it is removedby coordinate transformationsinto, for instance, isotropic forms such

as (1-48_ nevertheless, in the above sense, it may be regarded as a physical

singularity. For instance, if a neutron star of a given mass has a radius equal to

the gravitational radius RG = 2GtvVc 2 we are then in serious trouble because this

star might never be seen even if it were located closer to us than the moon.

This point was checked with our models. The conclusion is that all the

models constructed in this research have radii larger than RG, the limit set by the

Schwarzschild singularity, from the llghtest models to the densest (where _: =co),

and if they do exist, the emitted light will travel into outer space. However, it is

not known whether somewhere in the interior of some of the superdense stars, the

.2GM(r)
condition r > C2 is violated or not. In the extreme case of a central

singularity, this condition will be violated in the interior. However, as was checked

in Section IV-3f, the Schwarzschild singularity does not occur both in the interior

and on the surface of all of the six models selected for further investigation as stable

neutron stars (the results for the densest one of them, Vy.T, are listed in Table 20).

After also examining results from my other models I conclude that this applies to all

the other models as well, if the central density is not too high.

h. Binding Energies

Two kinds of binding energies (in mass units) have been introduced. One, MB,

represents the total binding energy of a star with respect to the mass before the con-

stituent particles have been assembled in the form of a star; the other, M' B, is the

macroscopic mass defect, or the binding energy due to the presence of only a gravi-

tational field. The results presented reveal that M B can be either negative or
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posltive, while M' B is always positive. This can be explained as follows: By

definition,
R.

= Mp- M where Mp =Jo _m_--_ ("Z) d W-M B

and R

where E.. is the total energy density which includes the rest mass energy and all

M= _o _ J'}"-= _ Lkv,.) (4,-]3)

(4-14)

internal energies due to microscopic phenomena (kinetic energy_ and potential

energy due to interaction forces between constituent particles, etc. ), while _m

is specifically the sum of rest masses of the cons. ztuent particles. We can, therefore•

decompose _ into a rest mass part jOm and an internal energy density ('_.-in.)

(4-]5)

0

Then, M B can be re-expressed as

g

o

-' tJ ....."?M B -J ),_ -g,,.7.J - 4"7T_ c,bV-
t'?

who,oC=__(e_+ f,.
I

r

Noting that ,./2"-grr(r ) = (r - 2 u(r) )" > 1,

positive, while (_c__.in) consists,

the first term in (4-15) is always

in our case, of the kinetic term (which is positive)

and the nuclear potential term which is also positive if a repulsive potential

dominates. From earlier discussions we know that the total internal energy density

__,,- in) is also because the attractive becomes larger thanpositive potential never

the kinetic term in magnitudeo Therefore, the above expression (4-15) shows that

M B can be either positive or negative depending on whether the first term or the

second term is larger in magnitude, u(r) appearing in the metric is a functlon of

and, therefore, each term depends on the exact expression of the internal energy
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(especially on the interaction potential used) in a complicated way. This explains

why the binding energy M B became negative in high density limit for an ideal gas

and for pure neutron gases of type V_ , but failed to become negative in all the

other potentials used in this research° It is interesting to note that the corresponding

quantity became negative for high density in Saakyan's real gas model.

When kinet._c energy exceeds the rest mass, it appears that binding energy

becomes negative; this is true in a flat space because here vrZ_r r =1 and the first

term in (4-15) vanishes. That the curvature increases with an increasing gravitational

field which itself increases with increasing denslty and mlcroscoplc kinetic energy,

makes the situation more complicated.

The above simple reasoning that the binding energy should become negative

(and hence that Mp should be less than M) for the relativistlc particles (i.e. K_>>

mc2) applies, however, in the case of electrons. When the electrons become relati-

vistic, the effect of curvature due to gravity is still negligible(where _ ,-- 1013 gm/c3)r

and when the electron kinetic energy becomes much larger than its rest mass energy,

the bTnding energy does become negative: t hls is exhibited in Figures 37 and 40 (the

dashed curves are to the left side of solid curves for 1012 < _ c < 1014 gm/cm3)o The

r *effect is small, however, due to the small masses and ene.g_es assoclated wlth electrons

as compared wiih those of baryons°

Equation (4-14) may be re-wrltten as

Noting that V_/(r - 2 u(r)) > 1, this quantify is always 10ositlve in the presence of a
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gravitational fleldt as was noted in our previous results. The large values associated

with the macroscopic mass defect also point out the importance of the non-Euclidean

nature of space (gravity) on the problems of neutron stars and other superdense objects.

i. Effect of the Upper Limit Set by Relativity

The effect of the requlremQnt that the pressure cannot become larger than a

certain function of the energy density is summarized below. The general behavior of

models of dense stars (the existence of the firsb second and fl_ird mass maximums a,_d

finally the arrival at a constant mass and radius as the central density becomes

infinite in the manner illustrated by the general shape of the trajectory of the

solutions of the hydrostatic equations in the c/_m -M plane_ such as are shown in

Figure 37) does not changer irregardless of whether the relativistic limit has been

appiled or not and what klnd of restriction has been applied (whether it is the type

P_< _. or P_ ._v_ _ etc.). The main effect of such a restriction seems to be the

change in the actual value of the critical mass (Figures 32 and 40). For instance_

the Skyrme-Cameron type models have a larger critical mass at _ c =co after the

limitation P_ _ has been observed than before (Figure 32). \Yhile Figure 40

reveals that for Levinger-Simmons type models the more restrictive limitation P_<

causes masses to be smaller than in the case of the less restrictive limitation P_ _.

After examining all the models constructed in this research end their behavior, it is

concluded that the general effect of "cutting off" is to discourage any further change

in mass with any further increase of central density. For instance, if the pressure

saturat;on is applied in the lower branch of Oppenhelmer-Volkoff hump (_'hat is, if

the nuclear equation of state becomes equal to the asymptotic equation when the



288

mass is increasing with increasing central density)_ then the application of the

requirement P,,< K & (where K is a constant) prevents any further change of mass

in the same direction (in this case, the mass does not increase with increasing

central density as fast as it would in the case of no restriction_ and_ therefore_ we

get smaller masses above the pressure saturation point (refer to the curves for

P_< _/3 in Figure 40, for instance). While, if the pressure saturation occurs on the

upper branch after the Oppenhelmer-Volkoff crushing point has been passed_ then

on this branch the equilibrium mass decreases with increasing central density_ and

hence the appllcation of the limit P,< K _ discourages any further decrease of mass

wlth increasing central density: as a consequence larger masses obtain beyond the

crushing point for models with P_< K & than for the orlg!nal unrestricted ones (for

instance, compare curves (1)and (2) in Figure 32).

It should be emphasized that an exact knowledge of the equation of state

near and just above nuclear densities (around 1014< _ < 1016 gm/cm 3) is required to

determine the properties of the stars not only in this range but also of far denser ones.

It is true that denser matter_ about

equation of state such as P =

P= cn y =(1'- 1) _, with 1'

> 1016 gm/cm 3 should follow an asymptotic

or P = _/3 (or most generally the polytroplc form

appropriately chosen), but the important question is:

to what nuclear equation should this be joined in lower density regions?

j. Red Shift

We may feel that the denser stars have larger red shifts. However, on examin-

ing the behavior of red shlfi's with central density from the list in TQbles 10_ 151 16,

and 17_ we see that the red shift is largest for models just above the Oppenheimer-
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Volkoff crushing point, and that with a further increase in central density, red

shlft first decreases and then stays constant as _,c _coo This is because the red

shift is determined by the ratio of the total mass of the star to its radius, and mass

and radius stay nearly constant as the central density approaches infinity in super-

dense regions, it is quite large around the maximum mass point, even as large as

about 0.3 for real gas models_ This _s consistent with the predlctlon of Burbldge (67)

that red shlft of such a star can become as large as about 0.5 ( = A;_/;_).

!V-5 CONCLUSIONS

(1) By invesf_;afing the pro.oerHes of models based on two confra_f;ng

possible forms c._ interaction potentials (type Vp and type Vy) both consistent

with e×perlmenl'al data in the medlum energy regions near and just Gbove nuclear

c_ensifies_ we are led to the conclusion: that models of these bye types posse_s

quite different propgrt.:es, es.oecially their crlfic_l mass values and radii, in stable

region;, the rad:i o'_ the Vy fyFe models are almost twice those of type V_ and

the critical mas; of models e._ type V 7 are also about twlce as large as the corre-

sponding mass va!ue o_: type V0 moc_e!s. It is most deslrable to furtller improve

the nuclear equation o._ state in the crlflcai region of 10 ]4 gin/am3< ._ < 1016o5

gm,/cm 3, Through kr_ow_ng the na'?ure of the interaction forces between baryons, we

will be able to conskuc_ better neutron star models; or by the reverse process_ if in the

future we happen to obtain !'he mass and the radius of neutron stars through obser-

vationsr we may be c_b_e to solve the problem of the intera.ctions between nucleons

and strange Fartlc!es=
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(2) The above investigation shows that other effects, llke that of the

relatlvistlc limlb the effect of hyperonst etc. are relatively small, compared with

the effect of the exact form of the interaction potential.-.° However, we realize

that the present research has been b_sed on a very artificial assumption, namely,

that all hyperons are under the same interaction potential of either type VI3 or

V,y-t and this may not be well justified. If a better expression for the interaction

forces between strange particles is adoptedt the hyperon effect may turn ou'# to be

quite importanto

(3) Another ou|'come which may well be noted is the possible importance

of the electron-heavy nuc_el envelope in some of the llghfest neutron stcrs. The

most extended envelopes occur in unstable reglons_ but _ was shown that some of

the stable neutron stars could have quite an extended envelope also, almost as

large as the neutron core itself, a!though the mass contalned in it would be small°

(4) By calculG-dng the c.Jrwture o_ space_ it was demonstrated that general

reiativ_ty is importar,_" _n l'he problem of neutron s$'arso

(5) It was shown _hat al! the models in hyJrostatic equilibrium have radii

icrger than RG - 2MG (o_-herwise v f- grr(R) would have to be infinite or
c 2

hnag_nary)t and it may be concluded, thereforet that al! s_able haul:on star mode!s

do not face the _eublesorne Schwar_.sch_ld singularity°

IV_6 SUMMARY

To summarize the resui'-s, some o{ the interesting physical q.._ant|ties for

d;fferent models are listed in Tables 22_ 23, 24,
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TABLE 22. Properties at critical points (the stellar radius R, the gravitational

and proper masses M and Mp in units of solar mass, the central matter and energy

densities _m c and _.c, and the red shift) for a real gas model of neutrons with

VI3 , V 7 and Vj3 7' for composffe models of a real gas of type Vp and V 7, the

Skyrme-Cameron type models, and ideal gas models, are listed at: (1) the second

maximum, (2) ;'he thkd maximum, and (3) the central singularity with _:.c =co.
(Summary of my results°)
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TABLE 23. The physlcal properties (1) near the Chandrasekhar crushing point and (2)

in the region of the electron-lon extended envelopes, are listed for various composite

models of low density for the purpose of comparison,
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In Table 22, the stellar radius R, the gravitational and proper masses M and

Mp, the central matter and energy densities _m c and G °, and the red shift, for

models constructed in this research (the Lev_nger-Simmons type real gas models of

a pure neutron configuration (Vfi, Vy and V_ 1' ) and of composite conf.:gurations

(Vj3 and Vyl, the Skyrme-Cameron type real gas models, and _deal gas models), are

listed at: (1) the second max._mum point (the Oppenheimer-VoZkoff crushing poin_),

(2) |he third maximum point, and (3_ the point where the central s_ngular|ty developes.

From this table it can be seen that the red shift in ideal gas models is about 1/3

that in real gas models, the difference in red shifts between different real gas models

being quite smc_il, The red shift |s only about 1% or less -or llght neutron star models,

_s about 0ol ._o0.3 near the OppenheFmer-Volkoff crushing point, becomes somewhat

less _t the third maximum point and stays constant thereaf_'er as the cen._r_l d_nsity

becomes infinite° !n Tab!e 23, the physlca! properties near (1) the Chandrasekhar

crushing point and (2) in th_ _eg_on where the electro_.-ion onvotopes become mos_.

extended, are t_sted _:or var_:'.us composite models of low density: the first two rows

give properties of composite models of the Lev_nger-S_mmons _ype V_ and V-)- .

Listed together wi_h these for the p,.;rpose o{: comca._ison are the corresponding proper-

t:.es of Salpeter (ea,ui_ibri..Jr_ m_deis) and the Wh_ele._, Ch_ndrasekha_', and

Rudkj_b_ng's models_ In Tab!e 24, the models o_ o_hers and those con_.truc._ed in this

research are compcrgd, at (t) the ©ppenheimer-Vo_ko{:f crushing point and (2) at

._.ano._her _mpor'_ant cr_._ca! point where ._he central s_n_u!arity developeso By exarn_n.-

_ng this table, we may obta!n a qu_ck vi._w o,_ the eft:oct of the interactions between

particles, o_ |he presence of hyperons and o_her bai_yons, end of the relaHv_sfic upper



I

29_

limit P< _i or P_< _/3. It should be noted that Saakyan's ideal gas models are

for baryon gases while the ideal _as models of Oppenhelmer.-Volkoff and those of

the present research are for pure neutron gases, while Wheeler_s models are for a

relativistic proion-neu_ron-electron system. The critical ma._sat which central

singularity occurs as obtained by Wheeler has no connection with the rest of his

ideal gas models, because it was obtained fhrough an independent ar:alytlcal method°

His maximum m_ss c_ about 1.48 M G therefore represents an approximation for real

gases and agrees roughly wi_h the other real gas models presented _n this table. In

Tab!es 23 and 24, Lo-S_ means models of the Levinger-Simmons fy.oe and S_- Co indi-

cates models of the Sky,me-Cameron type ob_alned _n this rese,_'ch_ The models of

other authors a_'e indicated hy the full or abbreviated nc_mesof the respective authors.

For instonce_ Gh_nd:ao means the models constructed by Chandrasekhar, etc.

Other s),mbo!s _n Tables 23 end 24 are the seine a_, those introduced _n TcL_!e 22.
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HOT NEUTRON STAR MODELS

V-1 INTRODUCTION

295

analyzed.

ature, luminosity, coollng, and detectability of these dense stars, were, however,

completely left out. This chapter is devoted to these problems to complete our

investigation.

it was noted in Chcpter i that the integrations through the degenerate

core from the center do not contain temperature and that all the temperature-

dependent properties are determined through the integrations over the thin non-

degenerate outer layers from the surface. The structure equations in these outer

layers are, from Chapter I,

dP r _'p,_./C 2"-_- _( r-)_ @ (z/'3TJZ 3 P/L/C 7"-l-- Jv_,_)

z) (5-i)

d Mr
- 4"n n_ _ ? (n.) (5-2)

dr

dTr =_ 3 K (fl-) eCJZ.) L (radiative or

dr ,br" _, C, T£L3 ,/-F'IT/7., _" electron conduction) or (5-3)

dTr IJ_ ) "T'r_ ol-E )Jz-
T = ( I - _ (convective) (5-4)0L)L

where Mr, Tr, Pr' e (r), and _(r) are the mass, temperature, pressure, density

and opaci_y at a distance r from tile center, L Esthe total luminosity of the star,

and other notation is the same as in Chapter I. The general relativlsHc expressions

In the last chapter the hydrostatic structure of degenrate stars was

Some importanl- questions, such as those pertaln_ng to the internal temper-
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are used in hydrostatic equations because the result of the last chapter (Table 19,

last two rows) reveals that the general relativity effects are not negligible near

the surface.

To solve these differential equations, the density and opacity must be

eliminated through the explicit relations

Pr = P (_(r)' Tr) (5-5)

/t"(r) :/r.. (?(r), Tr) (5-6)

for a given composition. In the core integrations of Chapter IV, we saw that the

most troublesome task is making a correct choice of equation of state (5-5). In the

non-degenerate outer layers the equation of state is relatively simple (Section V-4a),

but here it is the opacity, (5-6), which poses the most complicated problem. The

next section (V-2) is, therefore, devoted to the subject of opacity.

Also, we must have a suitable boundary condition at the surface. The simple

condition (1-6b) is no longer adequate when we are concerned with the outermost

layers. More accurate boundary conditions for surface integrations are obtained in

Section V-3 through the construction of simple model atmospheres° The actual inte-

grations of the structure equations over the surface layers are carried out in Section

V-4. Some temperature-dependent properties of neutron stars, such as central and

surface temperature, and the distribution of pressure, density, and temperature near

the surface, are investigated in this same section. The total energy contents of

neutron stars are then found in Section V-5. Luminosity, both optical and neutrino,

is calculated in Section V-6, and cooling curves are obtained in Section V-7.

The observational problems are investigated in Section V-8o The conclusion is

given in Section V-9.



297

The temperature-independent properties of hot neutron stars are the same

as those of the cold models obtained in the last chapter, as long as the internal

temperature does not exceed about 5 x 1011 OK . This criterion applies to any

hot neutron stars of appreciable duration as will be seen in Section V-7.

V-2 OPACITY

a. General Remarks

The opacity is the most decisive factor in the envelopes of neutron stars.

Both radiative and conductive energy transport are expressed by (5-3) together

K(r). Let us call the radiative opacity

with a suitable expression for/I_ R, and the conductive opacity

opacity K is given by

I

K c , then the total

= 1 + 1 (5-7)
K ICR I¢c

Radiative opacity is due to the various processes of atomic and molecular absorption,

emission and scattering of radiation in v/hicll electrons play the major role. The

relative importance of these processes depends strongly on the temperature-density

combination. For instance, in matter of high temperature and of relatively low

density, electron scattering is dominant, while in the region of intermediate density

and temperature the various photoelectric effects such as the bound-free and free-

free processes are the most important. In degenerate matter of high density electron

conduction is in general the most efficient mechanism. The major processes of atomic

absorption are (1) bound-free process where bound electrons are ionized through the

absorption of photons, (2) free-free process in which free electrons are excited to

higher states through the absorption o_ photons, and (3) bound-bound process where
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boundelectronsare excited to higher boundstatesthroughthe absorptionof photons.

Excited electrons emit photons in the inverse processes= The scattering processes

are (1) Thomson scaffering if the temperature is not too high

scattering for T_ 5 x 108 °K.

and (2) compton

In general, the radiative absorption coefficient depends on the frequency of

radiation v. There are various ways of obtaining .the mean coefficient of absorption.

The most commonly_sed of these is the followings called the Rosseland mean,

I_.. _ T) dT) J

where

is the mean free path of a photon of frequency v; IJa(V) and p s(V)

(5-8)

(5-9)

Qre the usual

coefficients of absorption and scattering, given by

where ni is the number of atoms per unit volume in state i; _i (v)

(5-]0)

is the cross

section for absorption of radiation of frequency v by these atoms; ne is the number

of electrons per unit volume; and ._ s is the compton scattering cross section which

becomes 0) o, the Thomson scattering cross section, in the low temperature limit.

Thefactor (l-exp(-1_-_) ) in (5-9) is to account for stimulated emission, h

and k are Planck's and Boltzmannls constants, respectively, and

(oB(v,T) = (2 h v3/c 2) "P ( + l_'f ) - ]

is the Planck dlsfribution function corresponding to a temperature T,

is matter density.

(5-11)

Conductive opacity is obtained through the thermal conductivity ;kc, which

is defined by
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dT
d-7---"o, (5-12)

where dT/dr is the temperature gradient in the direction r and O is the flux

of energy. Noting that the temperature gradient is expressible also as

¢<. J+61T a C z (5-13)

and that L/'4r/l"r 2 is the energy flux, we see that these two equations are identical if

(5-14)

That is, the solution of the problem of conductive opacity boils down to the deter-

mlnatlon of ;kc, the thermal conductivity.

If Ha(V), _s (v) and Ac are known, therefore, the above equations enable

us to find the total opacity _: , in principle. The opacity obtained in this way

o
usually has quite a complicated dependence/_ensity and temperature and is expressed

as

/_ = _: ((9, T), (5-15)

In recent years, various extensive tables based on detailed computations have been

published which give the absorption coefficient for many different compositions and

for a large number of points in the temperature-denslty diagram. The most accurate

method of obtaining opacit;es at present is thought to be through the computer pro-

grammlng code for stellar absorptbn coefficients and opacities censtructed by A. N.

Cox and his colleagues of the Los Alarnos Scientific Laboratory, which includes most

of the possible major processes contributing to opacity.

b. Cox's Opacity Code

The code was constructed so that it could be run for a mixture of as many as

11 eloments. It includes bound-bound, bound-free, and free-free absorption, electron
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scattering (both Thomson and compton scattering), negative ion absorption and

electron conduction_ and can be run for 50 discrete values of density and 50 discrete

values of temperature. The bound-free absorption depends on the equilibrium number

of electrons which are bound in the various atomic states. \Vhen the ionization of

one element is completed, no more bound-free absorption due to that element can

occur. For high densities the effect of degeneracy is taken into account in all but

the electron scattering term. At low densities and low temperatures not al_ electrons

are ionized° An ionization code should be used in conjunction with the opacity

code in these regions to calculate the degree of ionlzatlon_ the partial pressure of

electrons_ and the number of free electrons and bound electrons in the opacity cal-

culations.

At temperatures above about 5 x 107 °K_ almost all elements (even the

heaviest elements) are ionized. The existing tables mentioned in the previous sub-

section a:'e also used to obtain absorption cross sectbns 6_i(v) for the various kinds

of processes: bound-free_ free-free, negative ion, etc_). The electron scattering

term is obtained for the non-degenerate case in which pair production of electrons

and positrons is neglected, and it is_ therefore, independent of density but dependent

on temperature in the high temperature region where compton scattering is dominant.

Different approximations are applied for different degrees of degeneracy to evaluate

the conductive opacity Kc o

c_ Opacity Calculations

Cox's opacity code was run by Mro B_ Sackaroff, a member of the computer

staff at the Goddard Institute for Space Studiese on an IBM 7094 computer for (1) a
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pure _ron composition and (2) a pure magnesium composition*, in the range of

temperature from 103°7°K to 1010 °l_,, and of density from 10-4.3 gm/cm 3 to

1014 gm/cm 3. For a pure Fe56 or Mg 24 composition, Cox's code did not work

for temperatures below 103°7 OK and densities below 10-4.3 gm/cm 3. Opacities

at densities higher than 1014 gm/cm 3 have not been included in this calculation

because degeneracy sets in at densities far below this. Calculation of the same

quantities at temperatures higher than 1010 o K has not been carried out because

the assumption of electron scattering in non-degeneracy and no electron-positron

pair creation causes serious errors there. The opacities (ln K) thus obtained have

been stored as an input deck of cards in the form of a two-dimenslonai table corre-

sponding to a given In T and In _, comblnationsjfor later use.

The ionization code was run in conjunct'on with the opacity code of Cox

in the low density and temperature regions where the [cnization code works (roughly,

the region where photoelectric effects predominate) to obtain the correct degree

of ionization at a given combination of temperature and density.

d. Resu!ts

Results obtained in this manner are plotted in Figure 42. 1he solid curves

represent the opacity of iron 56 as a function of density at different temperatures,

while the dashed curves represent the same for magnesium 24. The opacity shows

quite a complicated dependence on density and temperature in the region

< 106 gm/cm 3 and T < 108 °K_ where the transition from electron scattei'ing

*The reason for these particular choices is explained in Section V-4d.
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or electron conduction to Kramer_s opacity (malnly various kinds of photoelectric

effects) occurs. In Figure 42, the almost straight horizontal lines in the region

of T > 109 OK and _ < 106 °K are due to compton scattering, while the almost

stralght lines of negative slope in regions of higher density are an indication that

electron conductlen is the dominant _actor in the transport of energy there. We

can assume that degeneracy starts as soon as the opacity curve in Figure 42 starts

to follow one of these straight negatively sloping lines.

in order to understand the meaning of these opacity curves more clearly and

to check the results obtained through Cox_s opacity code, it was thought to be

helpful to investlgate some of the asymptotic forms of the complicated opacity

formulae presented in Section V-2a.

e. I(ramer's Formula for Bound-Free Trans_tlons

We noted that in intermediate temperature and density regions, bound-free,

free-._ree and bound-bound processes are in general the most important. Besides

these, some negative ion absorption, especially in the case of H', is quite important

in low temperature regions° However, in the particular case of a composition of pure

iron or pure magnesium and also in the outermost layers of neutron stars, only the

bound-free process is thought to be important= This is mainly because of the extra-

ordinary composition and the extraordinary high temperatures which are associated

about several thousand degrees of
with the surface of neutron stars (about 106 ~ 7 o K as compared with/most typical

stars such as the sun). Due to the absence of hydrogen and helium we do not have

a source of negative ions. In the presence of heavy elements, the bound-free process

5x

is possible even under temperatures up to about/107 OK. In the presence of the
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bound-free processes,the contribution from the free-free and bound-boundonesis

usually negligible, as will be seen shortly.

Various molecular processes become important at lower temperatures, but the

surface temperatures of neutron stars of interest are too high to let these molecular

processes enter into our consideration.

The conclusion is, that to analyze the behavior of opacity in the low temper-

ature low density limit associated with neutron stars (that is, the upper-left corner

in Figure 42), we need consider only the ordinary bound-free transitions in the non-

degenerate case.

The absorption coefficient per atom and per electron for bound-free transitions

is given by

abf = 64_T_'B'Le'°(-Z '_3 -/C3,]'_ C, _16"F'C _" )_ 3) (5-16)

where Z ] is the effective chorge of the ion_ n is the principle quantum number of

the electron, and g is a non-dimensional factor called the Gaunt factor_ which is

of order of 1 and varies slowly with n and _ . The over-all absorption coefficient

for bound-free transitions is then,

A H / (5-17)

_A is the concentration of the atom in question, H is the mass of hydrogen,

(2CA _/AH) is the total number of atoms of atomic weight A per unit volume and

NA, n is the number of electrons per atom bound in the nth state. On substituting

(5-16) and (5-17) in (5-8)and (5-9) in the absence of the scattering term and of

hydrogen and helium, the following approximationr cal led Kramer_s formula, results

/_bf((, T) = 4°34x 1025 ( _ ) eT -3°5 (5-18)
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,_ is the meanGaunt factor, and t, called guillotine factor_takescare of all the

requlred modlflcat|onsand corrections, t/,_ is in general on the order of 1 to 10.

After applying a slmilar argument,I(ramer'sformula for free-free transltions

in the absenceof hydrogenand hel|umtakesthe form_

, ff( T)=3.63× 1022 T-3.5 (5-19)

From these two equations, it is clear that for the composltion of interesb free-free

opac|ty is about 10-3 times that of the bound-free process_ whlch proves the original

assumption that the former is negligible compared with the latter. (5-18) app!ies in

the low density-temperature region where degeneracy is not important (the ootermost

layers of neutron stars), or_ referring to Figure 42, in the upper-left hand corner.

In the presence of degeneracy (in the region of transition from Kramer's

opacity to conductive opacity)_ each term in (5-17) for the bound-free absorption

coefficient must be multiplied by the probability that the final state of the ionized

electron is empty, namely,

1
l-

l+exp ((E-p)/kT) '

where E is the energy of the final free state of the electron and i_ is the chemical

potential of the electron. The result is that in the presence of degeneracy, the bound-

free opacity is somewhat lower than that obtalned by (5-18_, Equatlon (5-18) is,

however_ still valid if the degeneracy correction is included in the factor t.

f. Electron Scattering

The electron scatterlng term in (5-9), Ps ()1), is evaluated as follows.

S|'artlng from the equation of radlatlve transfer wi_h electron scatteringt which holds
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for local thermodynamic equilibrium, and retaining only the first term in the ex-

pansion of Fn(V ), the flux of radiant energy of frequency v across a surface

with normal n, Sampson (68) found that,

Here, N(P) is the number density of electrons with momentum P ; vt .'_ (v), and -.fZ

without the subscript 2 are, respectively, the frequency, mean free path and solid

angle before scattering and those with the subscript 2 are the corresponding quanti-

ties after scattering. The differential cross section 6/0/ is given by the Kle_n-

Nishina formula for a system in which the electrons are initially at rest, denoted by

primes, as

_

where 1" =h _'l/mc2

y,_(i- r__@') _"

and ro =e2/mc 2. On substituting (5-21) into (5-20) and

applying the transformation from the primed to the unprimed system_ we obtain

):_eL_#_ ( )),T_= fl/Le _ _r _ U }'T_here

0

COT')=

' 10_

(5-22)

(5-23o)

(5-23b)

I o3 _!£'T ,'1'

where 1', E and T' are the photon energy, the elec_:ron kinetic energy and the
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temperaturein units of mc 2 g (1', E) is a complicated function of I' and E

as given in reference 68, u :hv/kT, and

is the Thomson cross section for scattering of radiation by electrons.

(5-24)

If all electrons

are ionized (which is the case when electron scattering is dominant as for T> 107 OK)

in the absence of electron-positron pair creation, the electron number density is

simply ne = _. eZ i
. _ N o X i,where X i is the concentration of the i th

atom and N o is the Avogadro's number. When only the element of mass number A

and atomic number Z is present (as in the present case),

?z
n - N O (for nucleus (A, Z)) (5-25)

e A

In the absence of absorption and emission processes, if we substitute #s(V) of

(5-22) into (5-9) and use (5-8), we get for the radlaHve opacity due to electron

scattering,

Where G (T) is a function of temperature only, which can be calculated from

(for nucleus (A,Z)) (5-26)

(5-27a)

Values of G (T) calculated in this manner are listed in a table in reference 68, which

is reproduced below:

kT(kev)i 2 4- 6 9 14 2o I 2o 5o 801 125q
_(T) 0.95005 0o9044i0o86_ ,0.8067j-0.7279 0o6525i0o5590 o_4,_o8)oo341ilOo2.4_91

...... (5-27b)



in the limited range of 20 kev ..< kT_ 125 kev, we have

(_(T) =-0.13887 + 4.9371 (kT)'_-5.9479(kT)'1-2.362(kT) -3/2

The conversion from kT in Kev to temperature in units of 109 o[( is

T_" kT(kev)/85.2

For an element where A/Z = 2, (5-26_reduces to

/_ = 0.2"_T) cm2/gm
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(5-27c)

(5-28)

(5-26')
S

the constant term is, in fact, opacity due to Thomson scattering, and the extra

temperature dependent term G(T) can be considered as a correction to the pure

Thomson scattering in the region of compton scattering° The above results show

that the compton scattering effect is negligible at T < 107 °K, but with increase

of temperature, the opacity decreases. It shows also that opacity due to electron

• • ! tscattering ,s Indepo.naen of density in the absence of degeneracy and of electron-

positron pair creation, while it depends on temperature _hrough the term G(T).

Pair creatlon of electrons and positrons is always negligible in the problem of neutron

stars, because the density is too high for this process even at the high temperatures

which obtain here. The degeneracy effect may, however, become importanb

especially in the transition region between radiative and conductive energy transport.

In the presence of degeneracy, the integrand in (5-20) should be multiplied by the

probability that the final electron state will be empty, as in V-2e. Thls results in

opacity in l he presence of degeneracy being lower than the non-degenerate value.

_a. Electron Conduction

The thermal conductivity of electrons has been derived by the use of the

electron theory of metals (31) as,
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where

2 , Jc • -

reduce to

and

T=

O31 0 4, G5, K and L are integrals of the form

where f(t) is some function of t. For the non-relatlvistic case, these equations

2.

H Zb _[ _( (-_l°g 12q T + /--log Z i -;-_ log F_/_
" A- 3 _ logFI )

For the non-degenerate, non-relativistlccase, itsimplifiesto

and for the degenerate, non-re!atlvlstlc case

(5-29a)

(5-29b)

(5-30a)

(5-30-b)

(5-30c)

? .._3_z/ _ _C_'- 1 ) with DC=PF/m e c
(5-30d)

The conductive opacity in the corresponding asymptotic regions is calculated by

subs,=tutmg _ above into (5-14)0

h, Discussion of the Results

First, let us consider the region where all but the Kramer's opacity are

negligible. When T = 106 OK, this condition is _'ulf|lled as long as

10 -4 gm,/cm3_ {:__ 10 2 gm/cm 3. Noting that t/_ in the absence of degeneracy
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is nbout ! to 10 Kramer's opacity for bound-free transitions calculated from (5-18}

is about 10 cm2/gm at (_ = 10-3 gm/cm 3 and about 103 cm2/gm at (_ = 1 gm/cm 3.

These va!ues agree almost perfectly with the curve of T = 106 °K shown in Figure 42.

For T = 106 °K and {_= 103 gm/cm 3 the quantity EF/kT '-- 1 and degeneracy is no

longer negllglblel although still small. At this particular polnb the results calculated

through Cox's opacity code are

105 cm2" m and_"/g #"c 101"8 2 .... /Ib"R K c
= = cm/gm =_ =/'_R + ,)'f-c _

Conductive opacity is already the more important. However, the Kramer's opacity

calculated from (5-18) still agrees with the radlative opacity/L/p, from Cox's code

if ,_/t is taken to be about 1/300. It has been noted that the effect of degeneracy

is to lower the opacity and that this effect can be included in the guillotine factor

to Therefore, it seems quite in order that ,_/t has been decreased from 1/10 to 1/300

in the presence of degeneracy° Nexb let us consider T = 105 °I(. "_,ramer s opacity

becomes ~ 102.5 cm2/gm at Lo = 10 -3 gm/cm 3 if ,_/t is taken to be about !/50;

while/_ bf " 104"5 cm2/g m at (a = 1 gm/cm 3 if g/t is l'aken to be 1/500. Both

values agree well with the radiative opaci|'y from Cox's code. When T = 105 OK, EF'

the electron Fermi ene_g;,, and kT become comparc.,ble with each other when

,-, 1 gm,/cm 3 and the increase of t in _his case is again as should be expected.

When T = 104 °K, EF/kT is already comparable to unity at about (2 ~ 10-3 gm/cm 3

and the non-degenera,'e_b f from (5-18} at this density is much larger than the value

from Cox's code if the ordinary value of g/t =1 ~ 10 is used. The conc!uslon is

that the general behavior of Cox_s opacity for iron composition and magnesium

composition is reliable in the region where KrameFs law of opacity app!ies, if
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degeneracy is correctly taken into account. It should be noted that the simple approxi-

marion (5-18) is good only for checking the order-of-magnitude.

Next, let us turn to electron scattering. For T = 106 °K, electron scattering

is negligible unless the density becomes less than about 10-4 gm/cm 3, which is out-

side the region of our major interest. At T = 107 °K, the opacity due to electron

scattering dominates over Kramerls opacity for e < 10-1 gm/cm3" At T =107°K,

kT is about 1 kev and Thomson scattering applies. Here, /¢'_~ 0°2 cm2/gm, which

agrees well with the T = 107 °K curve for {_ _ 10-2 gm/cm 3 in Figure 42. At T = 108

OK, kT is about 8,5 kev, (_(T) is about 0.8 from (5-27b), and the scattering opacity

JL"s ~ 0.16 cm2/gm from equation (5-26'), agreeing perfectly with the curve of

T =108 °K in Figure 42 for _ < 103 gm/cm 3. in the small range around _,-- 105

gm/cm 3 Kramer's opacity contributes appreciably, but for higher densities, electron

conduction takes dominance over the rest. At T = 109 °K, Kramer's opacity never

enters. In this region of high temperature, most of the electrons are ionized and

bound-
bound-bound and _free transitions can give hardly any contribution, the effect

of free-free transitions is also too small to be |mportan.h At T = 109 °K, kT is

about 85 kev, G(T) is abou|" 0_34-_ and (5-26:) gives Ks " 0.07~ 10-1'1 cm2/gm =

constant, which agrees we!! with the result shown in Figure 42. At this temperature,

degeneracy starts at about 106 gm/cm 3, and radiative opac_ly is replaced by con-

ductlve opacity at higher densities. When T = 1010 OK, kT is about 0.85 Mev and

EF/kT becomes comparable with 1 when C "" 109 gm/cm3° At lower densities the

main mechanism for radiative transport o_ energy is compton scatterlng with

K s ~ 10"2_5 cm2/gm, while at higher densities electron conduction is the most

efficient process (see Figure 42).
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The degeneracy effect on electron scattering is negllgible for T < 108 OK,
,,v

because EF/kT is less than about 0.05_'that is, degeneracy is negliglbl_for _ 10 3

gm/cm 3 at T -- 108 OK. At this same temperature but at hlgher densitles, Kramer's

opacity dominates over electron scatterlng before real degeneracy sets in and makes

conductlon the most efficient mechanism. At temperatures below T = 108 OK

Kramer's opaclty predomlnates over electron scatterlng at denslties even lower than

above. For higher temperatures, a non-degenerate treatment of electron scattering

may not be well justified in the transltion region. At T -109 OK, however, EF/kT

is already around 0.1, at _ ,-, 105 gm/cm 3 and we expect that the only effect of

includlng degeneracy at thls temperature will be to lower slightly the corner of the

curve for T = 109 OK in Figure #2 in the approximate denslty range 105 to 10 7

gm/cm 3. Thls decrease in sca.+terlng opacity with increaslng denslty due to degener-

acy is expected to start at about _ > 106 gm/cm 3 for temperatures > 10 bill:on

degrees.

Jf electron-positron pair production is included in these extremely high

temperature reglons (108_T < 109 OK), the opaclty would increase wlth decreasing

density if _ < 1 gm/cm 3 but the actual solutions of the structure Qquctions of the

envelopes of neutron s'i-ars in later sections reveal that this comblnatlon of temper-

ature and denslty is not encountered in the problem of neu._ron stars.

Finally, let us check the conductive opacltyo Because the term in the

bracket in (5-30b) is on the order of unity, and A/Z ~ 2 and x I ~ 1 for the compo-

sltion of our interest (pure Fg or pure Me), _he conductive opaclty for the non-

relativlstic, ex.+remely degenerate case becomes, {Yore (5-14}, (5-30b) and (5-30d),
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with x = PF/mc. Let us consider that _> = 106 gm/cm 3. Ionized electron gases

of heavy nuclei are still non-relativlstlc at this matter density, with a corresponding

Fermi energy of about EF ,_ 0.2 Mev and with x ,'-, 0.4. Then_ (5-31) gives us the

Fe 1.22x10 -9following values at _ = 106 gm/cm3; conductive opacity isiS" c =

1.22 x 10-7_ and 1.22 x ]0 -5 crn2/gm for pure iron, and is KclV_=5o65 x 10-10

5.65 x 10-8, and 5.65 x 10-6 cm2/gm for pure/vlg_ at T = 104 °K, 105 °K_ and

106 °l(t respectively. These values agree perfectly with the results of the Los

A!amos opacities shown in Figure 42_ as they should.

Next, consider _ =109 gm/cm 3 with EF ~ 5 Mev and x,,- 10, and note

that the electrons are relativistic here. At this density, equation (5-31) gives

/'CcFe =5.6x 10"15 , 5.6x 10-13 and 5=6 x 10-11 cm2/gm For Fg, and

t_c Mg= 2o6x10 "15 , 2.6x10 -13,and 2.6x10 -11 cm2/0m for Mg, atT =104°K,

105 °K, and 106 OK, respectively. These values deviate from the results shown in

Figure 42 to a small extent, but this degree of deviation is just what is to be expected

because the non-relativlstlc approximation was used in the derivation of (5-31) and

this does not apply well at this density. However, the condition of extreme degeneracy

is satisfied at all the points selected to be checked. In most of the electron con-

duction regions shown in Figure 42 electrons are degenerate. However, at the lowest

density for which conduction is still dominant at T = 1010 °K, the highest temperature

considered (that is, at the corner of the T =1010 OK curve near lo ,-- 109 gm/cm 3

in Figure 42), EF/kT is only about 5 and the assumpHon of extreme degeneracy is

not well justified. The small hump at this corner (in the transition region between
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the compton scattering and electron conduction at T = 1010 °K) occurs because of

deviation from perfect degeneracy as expressed by the approximate relation of (5-31).

Using the relation x = PF/mc _ n lz3'

written as

log)l_ c

p1/3, equation (5-31) can be re-

IconstxT21- 2log Ill PF<mec2),
I

(5-31)

which indicates that conductive opacity of degenerate matter should give roughly

straight lines of negative slope when plotted in the log ,_'c - log _0 plane, and the

intercepts should be larger for higher temperatures° This agrees with Figure 42° The

conductive opacity of Mg is lower than that of Fe due to the appearance of Z in

-1
(5-31). It also depends on Z/A- /4 but this dependence is too small to be seen

in a grGph such as Figure 42. It is reasonable that opacity of iron in the region of

photoelectric effects should be somewhat larger than that of h'nagnesium, because in

general more bound electrons are available at a given temperature and densi:y for

the heavier than for the lighter elements, and therefore more bound-free transitions

will occur in the former.

Compton scattering depends on composition only through the ration Z/A, as

seen in (5-26), which effect is also too small to be seen in Figure 42.

After examinlng i-he various asymptotic values, we can conclude that the

opacity table prepared through the Los Alamos code for pure Fe and pure Mg in

Section V-2c is sufficiently accurate for our neutron star problem.

In the above discussion, the temperature-density diagram for opacity on p.72

of reference 26 was used qualitatively to determine which particular kind of opacity

should be dominant in each of the temperature-density regions of interest.
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V-3 ATMOSPHERIC CALCULATIONS

\Ve have noted that the simple boundary condition (1-6b) does not lead to a

proper representation of the surface layers. Somewhat better boundary values at the

surface are obtained as follows.

Let us define the surface as the point where the actual temperature is equal

to the effective temperature, that is, Ts =Tet where the effective temperature Te is

defined as the temperature of the black body which would radiate the same flux F

as the star itself. That is, F bTe_ where= is Stefan's constant (5:670 x 10-5

ergs/cm 2- sec-deg.4). By definition, the total optical luminosity L of the star is

'_ R2F,related to the total flux per cm'- per sect F, as k = 47 where R is the radius

of the star° Therefore, we have

L = 4"T( _ R2 Te 4 (5-32)

In the atmospheric layers above the surface of neutron stars as defined above,

it is as:umed that the ordinary theory of s_ellar atmospheres applies, provided that

general relativity effects are correctly taken into account in some of the denser

models. According to the theory of radiative transfer in stellar atmospheres, the

first approximation (due to Ed_ington) to the temperature distribution in grey atmos-

pheres in radiative equilibrium is,

3
T4 = To 4 (l + -_ "C) (5-33)

whe re TO is the temperature at _=0 and "_is the optical depth defined as

d'_ =- /¢ _ (r) dr where K is the opacity.

If K p is independent of v

(5-34)

the theory of rad_atlve transfer leads us to the relation
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Te =21/4 To, and from (5-33) we find that the optical depth at the surface where

Ts = Te is "L" = 2,/3. The thickness and mass content of an atmosphere is negligibleS

in general, and, therefore, equation (1-1) when applied to reg;ons wlth_n atmospheres,

takes the simple form,

F. (5-35a)

wke re g = GM/R = constant. In the above derlvaHon, (5-34) was used to ellmlnate

r. The general relativistic equation (5-1) leads us to the same atmospheric equation

(5-35a) if g is re-deflned as

?0 c
and go = GM,/R.

H C. (5-35b)

To determine the pressure Pph' density io ph' temperature Te, and opacity

_( _)ph' Te) at the surface as defined above, the general procedure followed by

Ezer and Cameron in reference 69 was adopted here. That is, we assume i hat the

opacity )_" is independent of both height and wave length in the atmosphere but that

it has the value determined at the photosphere, _( tOph, Te): then we find from

(5-35a) that

For a given stellar radius, mass and luminosity, we first guess a value of (3 ph'

then find T e. from (5-32), and finally we.calculate bh through (5-36). The

equation of state at the photosphere is simply

(5-37)



317

Thefirst term is the gaspressureof non-degenerate fully ionized electrons

and heavy nuclei of pure (A,Z) compositlonl and the last term is the radiation

pressure. The notation used in equation (5-37) is the same as that introduced in

Section I11-1. Radiation pressure is negligible in dense interiors and even at the

surface in most cases. For instance at a temperature o_ one million degrees,

radiation pressure Py is 2.5 x 109 dynes/cm 2 which is negligible when compared

with the gas pressure Pg (=5 x 1012 dynes/cm 2) at the photosphere of a typical

neutron star at this same temperature. However, when the temperature goes up to

about 10 million degrees then P_,, =2.5 x 1013 dynes/cm 2 while according to

Table 25 Pg ~ 2 x 1014 dynes/cm 2 at the photosphere. At even higher temper-

atures, radiation pressure becomes larger than 10% of the gas pressure near the

photosphere of neutron stars. On substituting Pph as calculated through (5-36)

into (5-37)! we obta|n a new value for _.oph" We then repeat the procedure using

this now value as the starting point. This process is continued until we get the

desired degree of agreement between subsequent values of _ ph"

The above calcul_lions are performed with (1) a pure Fe 56 composltionl and

(2) a pure Mg 24 composition, because of the reason given in Section V-4d. The

photospheric properties of a neutron star depend on the specific model (that is, the

specific combination of M and _) and on the perlod in its lifetime (that is, the

surface temperature)°

The result of the present calculation shows that as a neutron star cools from

T e =5 x 107o1( to T e =2 x 104o1(, (1) optical luminosity is reduced from about 106

times to 10 -8 times the solar luminosity, (2) the _ ph decreases slightly from about
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I gm/crn 3 to about 0.01 gm/cm 3, (3) Pph decreases from about 2 x 1015 to 1010

dynes/cm 2 and (4) its opaclty at the surface changes from about 0.1 to 10¢" _cm2/gm.

In general, at the same surface temperature, hlgher values of Poh' _)ph and Kph

seem to be associa._ed with heavier models.

The surface boundary values of two typlcal models of stable neutron stars

(v6, 0.6M O) and (v_,, 2Me) wlth pure iron atmospheres are shown in Table 25.

For our lightest model (vp, 0.2 M_ ) at the lowest temperature considered at present,

Te =2 x 104 °K, we have L = 10-7°5 LC), {Pph =3o16 x 10-2 gm/cm 3 and

Pph =2°54 x 109 dynes/cm 2 which indicates that for T e _ 104 °K we need not

be concerned about opacity at densities lower than 10-3 gm/cm3. Surface temper-

atures lower than 10 thousand degrees are not included because the opacity code

does not work in these regions. 9n the above, LO =3.780 -', 1033 ergs/sec is the

sun's lumlnoslty 0

In evaluating the opacity _(O pht Te), the InK-In_ -in T table prepared in

Section V-2c and the interpolation subroutine are used to obtaln the desired value.

of in Kph corresponding to a given In _ph-ln Te combination.

V-4 ENVELOPES OF NEUTRON STARS

a. Surface Integration

In the surface layers where the pressure gradient is qulte high, it is most

convenient to express everything in logarithms and in terms oF In P. Then_ the

structure equations introduced in Sectlon V-1 become:
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d (_,./z)

d(hM_)
a(_,&)

wh ere

(5-38)

whe re

A =expC_,4_ _)- ¢/_p (',_ 2..+4_ ]vIA- .2..._ ¢ -/-A #)

D=oxp(h ?m))+o (h c)

a =7,569 x 10-15,G=6.67 ,: 10 -8 dynes-cm2/gm 2 c =2,9978 x 1010 cm/sec.

The equotlon of state in non-degcnerate layers is

(5-39)

and Pion as def;ned as (2-44) and obtained from Table 6 in Chapter II. In

degenerate envelopes, all pressures except the degenerate pressure of electrons are

negligible and the equation (4-1) of Chapter IV for degenerate electron gases re-

places (5-39). Pe in (4-1) is again evaluated from the result of Chapter Ii.

A computing program, which consists o._ a main program working in coniunction

with the integration subroutine_ the interpolation subroutiner the opacity table

prepared in Section V-2c as an input, and with the subroutine for the equation of

state and that for the atmospheric calculations, has been censtruc!-ed for the 7094

computer which carries out the intcgratlon and all the other computations auto-

matlcaily. For instance, the program is constructed so that the equation of state
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automatically switches over from (5-39) to (4-1) as soon as the point is reached

where these two become equal; the surface boundary values are calculated through

the subroutine for the atmosphere whenever a new set of values of R, M and Te are

glven; the interval of integration Z_ln P is automatically adjusted so that the

change of every variable is kept smaller than a preassigned suitable Iimlt; and any

desired value of opacity is calculated for any given set_f denslf'y and temperature

through the input opaclty table and the interpolation subroutine. The integrations

were termlnated when the temperature gradien_ completely vanished.

b. Atmospheric Temperatures

To determine the temperature distribution in the interior of the atmosphere,

the integration was first carried out from the photosphere down to the point where

= 1014gm/cm 3, for a typical model of M = 1 M O and 2 =10 km. This was

repeated at several different surface temperatures. The result is shown in Table 26.

The temperatures T at different- densiHes (corresponding to d_fferent radial distances

from the center of the star) are listed in terms of the given e,r#ective temperatures

Te. T b and P b are the temperature and density where degeneracy starts (where

the equation of s_ate switches over _:rom the non-degenerate expression (3-39) to

the degenerate expression (4-1)). it shows that degeneracy starts at about

Pb =106 gin/cm3 when the surface temperature is about 10 milllon degrees. But

when the surface has cooled down to about one mill_on degrees_ degeneracy sets in

already at Pb = 104 gm/cm3" A significant result is that even after the degeneracy

boundary has been passed, the temperature still goes up considerably as we go

inwards. Let us compare the internal temperature at p= 106 gm/cm 3 and that at
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TABLE 26

Atmospheric temperature distribution of neutron star modelg with M=]Msand R=lO kin.

The temperature T at a specified p,the temperature Tb and density Pb where

the degeneracy starts are listed as a function of surface temperaturcs Te.

, ..... , , , , ", ,-

SURFACE

TENPERATb_RE

Te (OK)

].6 x 107

1.2 x 107

1 x 107

9.4 x 106

6.7 x I05

5.1 x 106

4.3 x 106

3 x I06

1 x 106

7.7 x 105

£ .0£x10 c:

6.86,"d08

5.92:d08

5.75:,d08

4.51xlO 8

3.79x10 S

3.3 95xlO 8

2.64.-:_108

9.61xlO 7

6.5x107

T (OK)

3.47x109

2.34x109

! .825x10'-:"

1.CSxlC 9

1. lO:xlO 9

8.09x108

6. 765xi08

4.62>108

i. i2x]O 8

7.18._I07

3.65xlO9

2.425x109

1.88x109

1.73xlO 9

1.125:xi 09

8.21xlO 8

6.83xi0 8

4.64>d08

! .125xi08

7.35xi08

I
AT.j4 . 3:

ip =1 u gm/cm
I

(3

3.65x10 _

2.425x]09

I. 88xi0 £

i. 73x109

l.125:d09

_.2!xlC 8

6.83>:108

4.64x108

1.125xi08

7.35x108

Tb(°K)
,i . i i i i i ,

This
Research Morton

I.4xlO 9 2x109

7.7x10 f Ixl09

5.92xi08 --

4.8xlO 8 5xlO 8

2.6xlO 8 2xlO 8

8

1"5xi08 i !.19x30

1.03xlO 8 108

7.6xlO 7 -

3.5x107

2.3xlO 7 2x107

Pb

4.3x]O 6

i. 5xlO 6

1 x 106

5.4xlO 5

].4xi05

6.2x104

4.8xlO 4

4_-,EL04

104

4.2x].O 3
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p = 109 gm/cm 3 wlth the same temperature of the surface. The fractional rlse in

temperature as the denslty increases from 106 to 109 gm/cm 3 is about 10% when

Te =7.7 x 105 °K, but at Te= 10 million degrees the temperature at the point

p = 109 gm/cm 3 is about 3 times that at p = 106 gm/cm 3. As we go in toward

the center from any point where p--109 gm/cm 3 to p = 1012 gm/cm 3 the fractional

rlse in temperature is about 0.5% for Te = 106 °K, while that for Te = 107 °K is

about 3°. Even at the highest temperature considered, Te = 1.6 x 107 OK, the

increase is only about 5°. This shows that the temperature gradient is completely

negllglble for p > 1012 gm/cm3o

As we go inwards from the surface we find that the temperature gradient is

very high in the outermost thin non-degenerate layers and that the temperature

continues to rise as we go through the degenerate layers inwards. Accordlng to the

result shown in Table 26, however1 the inner neutron core (with p > 1012 gm/cm 3)

is isothermal even for the models of the hottest neutron stars of appreciable duration.

To determine the core temperature of neutron stars (or the central temperature),

let us go back to the graph shown in Figure 41 and some of the discussion of the last

chapter. Typical stable neutron stars have the following internal structure° Except

in some of the lightest models1 density and pressure are practically constant from the

center out to the very edge where neutrons (and hyperons if density is sufficiently

h|gh) form the main composition. The abrupt fall of density (and pressure) from their

central value (_c = 1014,,, 1016 gm/cm 3) down to the photospheric value (_ph =0.01 ~

1 gm/cm 3) and a change in composition from neutrons to electrons and heavy nuclei

is expected at the very edge of the star° Even for some of the l ightest stable neutron
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stars with large degenerate envelopes oF electrons and ions_ the outermost non-

degenerate envelopes are very thin (which is shortly to be shown numerica!ly)_ while

the mass contained outside the central neutron core where p < 1012 gm,/cm 3 is still

negligible. The boundary between the degenerate electron-ion envelopes and the

neutron cores has p ,,, 1011 ,-, 12 gm,/cm3. Therefore we conclude that the neutron

core is isothermal even for the lightest (stable) neutron stars and for the hottest of

those of appreciable duratlon_ and that the core temperature Tc (which is also the

central temperature of the star) can_ according to Table 26 and the above_ be defined

as that temperature where p = 1012 gm/cm 3.

Next to the last column in Table 26 lists Tb, the temperature at the degeneracy

boundary obtained by Morton. Morton's models have M = 1o3 Mg, R =9.25 kin, and

c 014p = 14.6 x 1 gm/cm 3. Also they have non-degenerate outer layers where the

opacity is expressed as,_"= 1.4 x 1025 :: -3.5p T cm2,/gm (a modification of Kramer's

formula) if T b < 1.19 x 108 OK. However_ the non-degenerate envelopes consist of

i'wo layers if T b > 1.19 x 108 °K_ in the inner layer electron scattering is the main

source of opacity (K s = 0.19 cm2/gm), while in the outer layer the modified Kramer_s

opacity is dominant. The opacity is set equal _o zero as soon as the degeneracy starts,

that is, Morton defined the core t_mperature, or the central temperature T c of the

star, as Tb, the temperature where the degeneracy starts.

For T e < 107 OK, the general agreement between Mortonts results and mine

is saHsfactory. The deviation between our results in the high temperature regions is

thought to be due to the temperature dependence of compton scattering for which i

made allowance in my use of Coxls opacity code but which was neglected by Morton.
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Figure 42 showsthat the comptonscattering has,at T "" 109 °1(_ already reduced the

opacity from the simple value 0.19 cm2/gm of Thomson scattering. The density values

at the degeneracy-boundary Pb calculated by Morton and myself agree well. The

major error in Mortonls procedure is that .he set Tb to be the core temperature_ that is_

he neglected the temperature gradient at p _ Pb" Our results show that temperature

increases even after density is increased beyond the point pb _ up to ".' 108 gm/cm3_

for some of the hottest models.

The central temperatures are plotted against surface temperature in Figures 43

and 44: The sol_d curves are for iron and the dashed curves are for/_g. Curves

drawn for three models of the V_ type in Figure 43 and for three models of the Vy

type in Figure 44 are marked by the appropriai'e mass. In Figure 43t Chiu's models

and Morton's models are also shovm. Chiu_s models have M =IM_ and R =10 km.

His treatment of opacities and the me|-hod for determining the central temperatures

are similar to those used by Morton° Note that our central temperature is defined

as that at 10 =1012 gm/cm3; while theirs is defined as that at p = p b" 104" 6

gm/cm3_ also there is some non-negllgib!e temperature rise as the density goes up

from p b to 1012 gm/cm 3. Therefore, our central temperature should be higher than

theirs for given surface temperature. This explains why Morton's points for Te< 107 OK

(dotted square) in Figure 43 are much lower than ours. At higher temperatures

(Tc,_,_ 109 °K), the compton scattering in Cox's code lowers the opacity fi'om the

constant value of ~ 0.2 cm2/gm (Thomson scattering) and this is expected to lower

our values of central temperature. These two causes of discrepancy_ however_

compensate for one another and therefore there is good general agreement among the

three for To_ 109°K.



326

i0 m

109

A

Y
o
v

E
Q,)

O

¢-

106

105

104

I

Potential

Fe

..... Mg

e Chiu (M=I Me )

13 Morton(M=l.5 Me)

M=0.2 Me

B

/

/

M=0.6 Me

=1 Me

104

I I

IOs 106

Surface Temperature

Figure &3

I

107

(°K)

108



A

o

:3
'4'="

o
b._

CP

E
Q.)

I--

13

r-

(I)

(J

i0 _°

I0 9

i0 8

107

I0 e

I0 _

104

Potential

Fe

Mg

M=I.I Mo

M=O.2Mo

/
/

/
/

/
/

/

/
/

/

/

/

/

/

/
/

/

M=2Mo

104

I I I

I0 _ IOs 107

Surface Temperature (°K)
Figure

I0e

327



P

328

It might be argued that the large discrepancy between Morton's and our

results might be reduced considerably if Cox had taken the degeneracy effect on

electron scattering into account, Howeverr this argument is not valid, because the

discrepancy is greatest for T < 108 °l(t while in this same temperature region, Cox's

opacity plot in Figure 42 shows that the electron scattering becomes important only

in the non-degenerate region (low density region) if it ever becomes important.

Figures 43 and 44 show that the central temperature is somewhat lower for

Mg than for F_ at the same surface temperature. This is due to the fact _hat somewhat

lower opacities are associated with A'_g than Fe as is revealed in Figure 42.

We also see that for some of the coolest stars (Te ,-" 104 °K), the central

temperature is only aboui" 10 times the surface temperature, while for hot models

(of T "" 10 7 °K)t the core is about 100 times as hot as the surface. In any case the
e

difference between the centra! temperature and surface temperature is quite small

as compared with thor of typical starst where in general Tc is at least about 1,000

times Te, (For instance, the internal temperature of the sun is about 5 x 106 OK and

its surface temperature _s 5760 °K s while a _ypical white dwarf with Te ~ 104 OK

is supposed to have an internal temperature of about 10 million degrees°)

The conclusion according to the present calculation is that neutron stars of

about 3 times solar luminosity are as hot as 10 million degrees at the surface and about

a _illlon degrees in the interiort those which are as bright as the sun have a surface

106 otemperature of 1 ~ 2 x K and an internal temperature of about lg 8 OK, and that

by the time they. cool down to the point where Tc ~ 106 ~ 7o,,.,, and Te -,, 105 °K,

they are too faint to be seen (L ~ 10-5 LO)o
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c. Temperature and Density Distribution Near the Surface

The internal distribution of temperature can be roughly seen from Table 26.

To examine the region near the surface in more detail, temperature is plotted against

distance from the photosphere as measured inward in Figure 45. Each curve is

marked by the surface temperature. The model with M =1 MQ and R =10 km is

used here and he_eaRer in this sub-sectlon to illustrate ._he general behavior of the

surface properties°

The crosses marked by ," = 2.5 represents points where the degeneracy starts.

This criterion for degeneracy is derived from the fact that the kinetic energy of a

non-relativistlc '_ermlon (about 3/5 o_: the Fermi energy EF) and the thermal energy

of a free particle with no internal degrees of freedom ((3,/2_kT) should be equal at

the boundary between the nonMdegenerate and degenerate layers. For the hottest

model shown (Te = 1_6 x 10 7 °K_, the cross is outside the range shown in the figure.

The result of the present calculations shows that even for the hottest models degeneracy

starts before we go inward by 100 meters from the surface, and that the non-degenerate

layers are less than 1% in thickness for even the ho_test models. The mass contained

in the non-degenerate envelopes is practlcally ze._o. (We saw in the last chapter

that the amount of mass contained even in the inner degenerate electron-ion envelopes

is very small compared to the to_'al stellar mass_) These results more than jusHfy our

previous assumption of constant mass and radius in the atmospheric calculations and

also the neglect of non-degenerate layers in determining the total mass and radius of

neutron stars in the previous chapter° Hot neutron stars with T e ~ 107 OK have non-

degenerate envelopes o._ about 10 to 20 meters in thickness, but when the surface
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temperature falls to about a million degrees the thickness of the non-degenerate

layers becomes about a meter or so. A typTcal neutron star w_th the sun's mass, a

radius of 10 km and a surface temperature of 6.7 x 106 OK (about 100 times as bright

as the sun) is shown to have non-degenerate envelopes of about 3 to 4 meters in

thickness.

The density profile near the surface is p!ot|ed in Figure 46 for the same model.

The distance from the surface is now shown by a cm-scale. This shows that within

about a meter (0,.01% of radius) from the photosphere the density rises to about 105

gm/cm 3 for cooler stars (when To ,,, 106 l_,) and to about 102°5 gm/cm 3 for hotter

stars (T e = 1.6 x 107 OK). _n the photosphere_ the density rises within a thickness

of 10 cm by a factor of about 100 for coo_er models (Te ,'- 106 OK) and about 5 to 8

for hot_.er ones (Te = 1 ,,, 2 x 107°[_,). _uch smalJ scale heights may cause the

diffusion process to become important.

The distribution of density, tempercture and degree of degeneracy EF/kT

within the thin layers about 20 meters from the surface are numerically shown in

Table 27 at several different interesting values of surface temperatures. On comparing

Table 27 with Table 26, we see that the degenel-acy criterion used in Table 26

(where the non-degenerate equation of state bGcomes equal to the degenerate one)

agrees well with that used Tn Table 27 (FF/kT = 2°5)°

d. Diffusion, Convection, and tt_c Composition of Envelopes

in Chapter !b it was concluded that the composition of the surface layers

changes sharply from layer to !ayer near the, surface, Si'arting from the boundary

between the neutron core and the degenerate electron-ion envelopest the composition
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changes from more neutron-rich nuclei to less neutron-rich _uc!ei as we go

outwards, as determined in Chapter II. In the outermost non-degenerate envelopes

with 10 < 106 gm/crn 3 the main composition was found to be of ordinary iron group

elements. Th_s is why iron was chosen in the earlier opacity and atmospheric cal-

culatlons.

As was mentioned in Chapter I!, a posslble change _n the above result is

caused by dlffus[on. We have jusi" seen in the last subsection (c) how small the

density scale heights are. Small scale heights end large gravity effects can make

the diffusion process quite important°

Chiu and Salpeter (22) made the fo!!ov4ng estimates, regarding the surface

composition of neutron stars: H and H e on the surface go down to the interior and

are burned up rapidly so that, consequently, these elements should be completely

absent in neutron stars; carbon is probably strongly depleted in a neutron star about

1000 years old; O and Ne are depleted slightly, while h_g or any heavier elements

remain unburned.

No quantitative inv_,stigation of the dL_fuslon problem has been made (as far

as I know), but qu_l_t'atively it is estimated that under the circumstances mentioned

above, lighter elements such as i\'!g, ©, and Ne, if present, are more probably the

composition o{: the photosphere than is iron, due to a relatively _ast diffusion process.

If it is assumed that the O and Ne are appreciably dgpleted, then Mg is the most

probable compos_._ion of the atmosphere of neutron stars° This is why not only Fe

but also Mg was selected in the opacity and atmospheric calculations earlier. At

the present time, the degree of importance of the diffus;on effects is not known, but
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I hope that this effect will be quantitatively accounted for in my models sometime

in the future. At the present stager it appears that the treatment applied in this

research is adequate enoughr because the uncertaintles due to other causes may be

more serious than the effect of diffusion on surface compositlonl as will be shown in

more detail in subsequent sections.

The change of composition due to diffusion1 however, does not occur if

convective mass motions in nonrdegenerato layers cause efficient mixing of elements.

In this case, the original statistical equilibrium cor.:posltlon o{: iron will be ma.;ntained.

However, convection appears to play no important role in neutron stars. This is

estimated as to!lows. The condition of stabili'..'y against convection may be written

as _

"_ actual ('- __ _-_'A adiabatic

(5-40)

£2 ' an adiabatic exponent, is in general 5//3 for non-relativistic slmp!e ideal gases,

4/3 for radiation or extremely relativistic gases, and varies between these limits in

most general cases of stable matter. _2 can locally become less than 4/3 quite

often. An example is _he hydrogen ionization zones in the outer layers of ordinary

stars. Another example is a mixture of radiation and electron-posltron pairs at ex-

tremely high temperatures and low densities° (y0) In the outer envelopes of neutron

stars_ however, due to the high temperatures encountered there, the ionization effect

on _2 is likely to be negligible and _22 will mos_ probably not go apprec,ably

below #/3. In this case, the above inequality demands that

( L, In T) < 0°25. (5-41)
AInP

*For instance, see reference 69 for the inequality relation and reference 70 for the

equality relation of (5-40)
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The quantity (Z\,_n T/_A,_n P) in my final six models of neutron stars has been cal-

culated at different layers. As we go inwards from the photospheres (A'_nT/_n P)

was found to vary from about 0.1 to 0.15 at the photospheres, to about 0.2 to 0.24

just below the photospheres, and then to go to zero smoothly before we reach a

point about 1 km below the surface. In no case was (A£n T/± _n P) found to exceed

0.25. Even if the above inequality breaks down at a particular point in some other

types of models it is not likely that this can occur in a region sufficiently extended

to make convection important.

V-5 ENERGY CONTENT OF A NEUTRON STAR

If we assume that a neutron star belongs to the end state of a thermo_ucleam

evolution, then there can be no energy generation within it. Any stable neutron star

is already so dense that the gravitational energy due to contraction is not available.

Even though the matter is highly degenerate, the only contribution to the total energy

of the star comes from the small tail of the Fermi d_stributlon function of the particles

which constitute the star. This is evaluated by retaining the first two terms in the ex-

pansion of the energy density integral, the second equation of (3-26) in Chapter !!!,

for a nearly zero-temperature ideal Fermi gas. The result obtained in rafere:_ce 7 is

quoted below. "_ (_k "__/2"'T"Cv = qT
N _'L C _" ._Cz (5-42)

where

Cv-- a ) (5-43)

is the specific heal at constant volume, for a fixed number of particles, U is the total
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internal energy, and x = PF/me is tile relativistic parameter. The total thermal

energy of the star U is then given in principle by carrying out the integration,

1"

LI= SoCvC7)
The actual procedure adopted in this research is as follows: Noting that

(5-44)

C V depends

linearly on T, we calculate the following quantity, the specific heat per particle

per unit temperature, which is independent of tempercture for all fermlons present

at a glven point in the star:

with .,_./_= (5-45)

where mk and pFk
F

are the mass and Fermi momentum of the component ko Pk

is expressible as a function of the number density of the k th particle, nko At each

point in the star, (Cv/NT)k times the number density nk of all components present

are added together: This sum then expresses the total specific heat per unit volume

per unit temperature at a particular point in the star. Due to the spherical symmetry

of the star, the star's total specific heat per unit temperature is then ob._alned by

carrying out the integration

T .kf Tr :cu-c

Thls quanHty is independent of temperature, and is a constant for a model o[ a given

(5-46)

moss and radius° Va!ues of (Cv/T) _or each of the six final models are listed in

Table 19 in the CogoS_system on a logarithmic scale.

The total energy U is obtained by integraHng C V over tempera._ure, as in

(5-44)° NoHng that (Cv/T) is indeponclent of temperature, we get
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Q = --_--'_fT a T __ __Z_" (5-44')
2.

T in the above expression is the infernal temperature of the isothermal core, which

has been calculated in Section V-4b for all six models (Figure 43 and 44) for both

pure iron atmospheres and pure Mg atmospheres, The energy content of our six

final models at various different ages (different surface temperatures) has been com-

puted in this manner for Fo and Mg, That for Fe is plotted in Figure 47 in terms

of the surface temperature,

If is seen that as the sur[ace temperature of a star decreases from about

5 x ]07 oK to 104 OK the energy content of the star decreases from about 1050

ergs to 1040 ergs, although the precise value depends on the type of model in question.

In the above calculations the thermal energy of all components present

(ground and first excited states of nucleons, the ground states oF hyperons, muons

and electrons) are included°

It may be worthwhile to comment at this point that the above discussion

does not exhaust all possible contributions to the total energy content of the star.

This is because in the above derivation of specl,Clc heats, E in (3-26) and (3-27) is

the klneHc energy only and the potential energy has been lef_ out.

The effect of the potential term is taken into account as follows. Let us

define the reduced mass, m*, as (71)

-- -- ' (5-47)

where v is the potential energy per particle. Then_ rather than using (Cv/NT)k

we multiply (Cv/TN)* k as defined below by n k, sum over all k and integrate
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over the total volume in (5-46) to get the total energy.

34O

where (Cv/NT)° k is the original unmodified expression.

The second term in (5-47 is evaluated as follows: Because the Levinger-

Simmons potentials introduced in Chapter Ill are funcHons of both the separation

distance r and the momentum p, and (dP/dP F) is 1 at the top of the Fermi sea

we have

The potential VL3 introduced in Chapter iil is a square-well potential with a finite

range and with a Yukawa tail outside this range. For the densities we are interested

in (those within a neutron star), the interparticle distance r is less than the range

dr/dr in the above equation is 0,of the nuclear forces (that is, inside the well),

end

has aThis sh,nple expression, however, does not apply for V'1, , because Vy

complicated dependence on r, and dv/dr is not zero even for small r.

1 , dV(P) ) for
Due to the difficulty in evaluating the term F-p-_-k dP PF

the above correction has been applied in the case of Vl3 only. Values of the

modJ._ed expression (Cv/T)* on e logarithmic scale for three models of type

(s-48)

Vy,

For the heaviest model, (V_, 1 MG) , the to}al energyare listed in Table 19.

(5-47')
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content is increased by a factor of 2: for the i ightest model (VG, 0.2M@) it is

decreased by a factor of 1.31 and for the medlum weight model (Vp, 0.6/v_) it

is increased by a factor of 1.2. This is because the nuclear potential is attractlvel

that is, negative1 in the major part of the Iightest star1 and m/m* in (5-45') is con-

sequently less than 1, as can be seen from (5-47), thus making (Cv/T)* and the

modified energy smaller than the original unmodified quantities. We note that for

this model, the cen"ral dens.:ty is 1015"2 gm/cm 3 and nlean denslty is less than

1015 gm/cm 3 and an at_ractlvel negative potential is dominant in this region of

density. Cn the other hand1 the medium weight and the heaviest model of type VI3

selected above have the central densities 1015°6 and 1015"9 gm/cm 3 respectively1

and in both of these the density is constant throughout the maior part of the volume.

Therefore1 the repulsive, positive potential term is dominant in this case, (m/m*) > 1,

and the over-all energy content is increased° Even though numerical calculaHons

have not been carried out for Vt, I it is possible to make a qualitative estimate of

the correcllon due to the potential term. The central densities of V 1, type models

are lower than those of VI3 type models in general.

model is 14.2 and I'hat of the heaviest model is 15o4.

For Vy, log [o c of the ilghtest

We expect that the potential

is negaHve in most parts of ';'he model (Vy, 0°2/v_9), s!igh'r!y negative for the mo_el

(Vy, 1.1 /V_)I while it is expected to be slightly positive and repulsive in the maior

part of the model (Vy, 2 M )o L_(Cv/T) (= (Cv/T)*-(Cv/T)) for the llghtestl inter-

mediate and heavlest models o_ _ype Vy is estimated to be roughly - 50%1 - 20%

and + 20%, respectively°
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The above correction for the interaction potential, however, turns out to be

rather small and unimportant in our final results (Section V-7) as compared wi_h the

corrections required for some other effects, for instance, that for the U_CA neutrino

process in the next section°

V-6 LUMINOSITY

We expect that a neutron star cools off rapidly, starting right after its formation

at an extremely high temperature (say, 1010-11 OK) , first by neutrino energy dissi-

pation, and then after it has cooled down to about 109 OK, through optical radiation

from the still hot surface. The energy loss rate due to these two mechanisms is calcu-

lated in this section.

a. Optical Luminosity

The optical luminosity of the star, Lph , is related to its radius and its effective

temperature through the simple equation (5-32). We see, therefore, that Lph varies

among different models (different _i,/of dlf'_erent ages (different To). The results are

shown in Tables 28-33 _or our six models (VB T, V BII, VI 3 111, VI,!, VyII, and

V1,111) at different surface temperatures ranging from the highest value, 5 x 107 °K,

to the lowest value, 1 ~ 2 x 104°K. To visuallze these values more clearly, let us

go back to Table 25 in Section V-3. [:or a neutron star of radius about 10 kin, it is

seen that the opHcai luminosity changes _rom about 106 times solar luminosity at

Te =5 x 107°K to about 10-7.5 times solar luminoslty at To =2 x 104 OK, and that

a star as luminous as the sun has a surface temperature ot: about 1 to 2 million degrees

and an internal tempera._ure of about 108 °K. A neutron star of R =5-6 km has

Lph =105°6 Lgat T e ---5 x 107°I_,, and Lph_ 10-8 L_> at Te =2 x 104°K.
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Optical luminosity is plotted against internal energy for the model (2 MO,

Vy) in Figure 48 (the curves marked "Optical"). The solid curve corresponds to

an atmosphere of iron and the dashed curve to one of Mg. Similar curves have been

obtalned for the rest of the models also. Such graphs are very useful in obtaining

tile cooling curves, as seen in Section V-7.

b. Neutrino Luminosity

The universal Fermi interaction predicts that an electron could radiate a

neutrino pair as well as electromagneHc radlatlon.(72) Even though the probability

for the neutrino radiation is enormously smalb it plays an extremely important role

in some stages of stellar evolution, because of the fact that the neutrino mean free

path is so large that it could escape even from a dense star with hardly any inter-

action, while electromagnetic radiation can only diffuse out very slowly from the

interior to the surface. In a very hot neutron star ( Tin > 109 °K), the cooling through

neutrino radiation is found to be much faster than that through electromagnetic

radiation, as seen in detail in Section V-7. Various different neutrino processes

possible in a stellar interior have been proposed° These are, (73'74) assuming that

temperature is not too high (T < 1010 o ._I_.j :

(i_)y+ y'_ e.-te+->#e__ P_

Ov)_e-+ C_ A) _ (_-1, A)-t-_cz-1, Cz, A)+e-+ #%
(v) e-+c_,A)_, e-¢ (z,/k_)+ y_+
(v !)yC- Coulomb field-- ),)¢ + _e

(Photoneutrino process)

(pair annihilation process)

(plasma process)

(5-49)
( URCA process)

(Bremsstrahlung)

(photonuclear process)

(photon collisions)
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Depending on the particular density--temperature combination we encounter, some

of these dominate over others, but generally in astrophysics the first four (i-lv) are

more important than the last throe (v-vll). In relatively low temperature-density

regions (T < 5 x 108 °K_ p < 105 gm/cm 3) the photo neutrino process is domlnanb

in the high temperature and low density region (T > 109 °K_ p < 10 7 gm/cm 3) the

pair annihilation process dominates over the rest, while in h_gh density-temperature

regions (p > 106 gm/cm 3 T >8 x 108 °K) most of these processes are suppre,. e  ue

to the paucity of empty electron states and usually only the plasma neutrino process

remains. The URCA process plays an important role only under special circumstances

such as during the dynamic collapse of a star° In a diagram in reference 75r the

temperature-denslty plane is divided into several regions_ inside each of which one

of the first three processes in (5-49) dominates. According to such diagrams (and

a_so from discussions given in re_:erences such as 74) the plasma neutrino process is

expected to be the most important mechanism in the cooling of hot neutron stars

(1010 > T > 109 °l<r p > 106 gm/cm3). Let us_ therefore_ look into this process in

somewhat more detail.

The neutrlno-pair decay o{: a free photon is usually forbidden by the energy-

2 2
momentum conservation law (when _ < k ), but inside an electron gas, the electro-

magnetic radiation has a spectrum of the form

2 2
_0 = _.'o + k2 (5-50)

and for 2 > k 2 such waves_ when quan_i"edt behave llke relativistic particles

(called "plasmons") of rest mass _0° each of which can decay into a pair. A similar

argument applies both to transverse and longitudinal plasmons, In (5-50)r k is the
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wave vector and wo , called "plasma frequency," is given by

_' _.,J' 4:@) fl_ _ P"_

where f(p) is the momentum distribution function for the electrons and

For a degenerate Fermi gas_ (5-51} reduces to

(5-5])

(5-52)

(5-51 ')

where PF is the Fermi momentum and EF is the Fermi energy

Noting that PF is related to density through

I/s
_:--(3__._ c_)3

we see that _a0 iS fixed for a given _ or no.

(5-53)

The neutdno-palr emission rates per unit volume from transverse and Iongi-

tudinal plasmons are given in reference 74 as

- (5-54)

(5-55)

where g = 3o08 x 10-12 me is the weak coupling constant, e is the electronic

chargeand 13 =(kT) -l. (5-56)

It should be noted that throughout the above discusslon the system of units where

c ="h" = 1 has been adopted° The above equations reduce to the following, simpler,

forms in c,g,s units: (74)
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Qt and Q_ were calculated first, for various different values of electron number

density ne and T, in the range of1024 cm'3 < ne <1040 cm"3 and 106°K<T

< 4x 1010 °1% When $ % ,-, kT, neither of the approx_matlons in (5-54 _) apply.

Therefore, Qt has been plotted against no at each given T in each of the two

limits x << 1 and x >> 1, and the intermediate region has been ;nterpolated smoothly

by hand on the graph. Q._ turns out to be negligible as compared with Qt through-

out the range considered. This result is shown in Figure 49, The number attached to

each curve is the corresponding temperature. The decay rate of plasmons at a given

temperature 1" increases with an increase in density at first, but eventualiy it de-

creases when extremely hlgh dens_tles are reached, as is to be expected (a maximum

at around [9 ,,, 4 x 1010 Tc] (for _ e " 2)), We see from the above that the emissivity

is a function of density only for a given temperature. Therefore, in the isothermal

core etF, neutron s._c_rs, Q is fixed at a given density (that is, et a given radial

distance from the center), The total neutrino energy loss rate (or neutrino luminosity),

L_) i can therefore be obtained by carrying out the followlng integration from the

center to the surface of the star:
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- o,+
in above calculations, no, rather than C' has been used as a free parameter

to represent density, because in the process of converting ne to j0 we must know the

exact compos|tlon of each layer in the star. It seems that the assumption

(A/Z) = 2 has customarily been employed in cther papers (74) for this purpose. This

assumption is correct for H4_ 016, etc., and is not a bad approximation for heavy

elements such as Fe56, However, it is seriously wrong to make this assumption for

the neutron core and also for the outer layers where the composition changes very

sharply from layer to layer. We have seen in Chapter II how the mean value of A/Z

deviates from 2 in high density regions. The core integration program in Chapter IV

has been constructed so that at each r, the corresponding he, _ and other inter-

esting physical quantities, can be calculated. By slightly modifying the computer

program, the integration (5-58) can be carried out without trouble. That is, the input

table listing Q as a function of ne and

at each point r, the desired value of Q

T is first constructed from Figure 49, then

is computed from the input table lust pre-

pared and the interpolation subroutine, and the 7094 computer is instructed to carry

out the integration (5-58) step-by-step, ne is fixed at a given r while T is

maintained constant throughout a star at a given age (note that the outermost non-

degenerate layers do not contribute to the integral). Neutrino luminosity L,_

has been calculated in this manner for several interes|[ng temperatures rang.:ng

between 1010 °K and 107 OK for each of the six models of the V_ or

The result is shown in the third column of TaMes 28-33. The values of

Lv < << Lph (optical) are not shown.

V_, type.

L v when

In all cases Lv is negligible as compared
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with Lph for T_ 108 OK: Neutrino luminosity is plotted against total energy

content on a logarithmic scale for the model (Vy, 2 MG_) in Figure 48. Similar

graphs are plotted for five other models also. The results are:

(1) At the highest temperature considered (1010 OK) neutrino luminosity is

about 106'' 7 times the optical luminosity1 (ii) at T ~ 5 x 109 OK L ~ 105
v Lph'

(iii) at T " 3 x 109 OK L v _" 103 ~ 4 times Lph, (iv) optical and neutrino

luminosity become more or less comparable at slightly less than a billion degrees,

(v) neutrino luminosity becomes negligible as compared with the optical luminosity

for T < 5 x 108 °K, (vl) the detailed properties, however, depend on the different

types of model. For instance at tile same internal temperature it appears that larger

neutrino luminosities are associated with the heavier models, and that for a given

weight and temperature the luminosiHes are, in general, greater for Vy type models

than for V_ type models (Tables 28n33). (vii) As the internal temperature

decreases from about 1010 OK to 5 ;: 108 °1,_1 the neutrino luminosity goes down

from about 1045 "" 47 to 1031 ~ 34 ergs/sec, depending on the type of model.

(viii) For typical hot neu!ron stars of surface temperature about 2 x 107 °K, neutrino

luminosity is about 103 "" 5 times optical luminosity or about 107 "" 9 times the solar

luminosity° (ix) When the surface temperQture goes down to about 107 °K, Lv goes

down to about 103 ~ 4 i.O .

After tile above calculations had been completed_ the following improved

approximation formula for Qt due to Inman and Ruderman (76) become available:
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Qt =1.228 x 1022/{__w° C90_k._-_.j _ where F(x) = z_ K_ C_ _) or
"t4X

--- - T (z))x : "
 J__o

where l_l/"-.L _i. _:_rl - .._ '

An input table listing F(x) as a function of x in the range 0=02 _ x < 10 was
i

prepared from (5-58), and Q t was calculated agaln in the same range of ne and

I as before; but this time with the equation (5-58), I'he F(x) - x input table, and the

interpolation subroutine. Some of the resull's are shown in Figure 49 by l'he black

dots. The former graphic method using smooth hand interpolation in the intermediate

regions is found to be in excellent agreement with the new analytic expression

/
(5-58), and it can therefore be concluded that further improvement of the results

t

already obtained should not be expected through the use of the new formula (5-58),

in place of the old (5-54 _')_o.,aethe.r with the graphical interpolation method as was

used previously.

Quite receni'iy, it was discovered that a modified "URCA process" in a

degenerate matter may glve an important contribution to the neutrino luminosity of

neutron sitars. According to qualitai'ive estimates made by Chiu and Salpeter$ 22)

This become known to me after all rny work hdd been finished' The plasma

luminosity estimated by the same aufrhors (22) is

(5-s9)

neutrino
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Aecordlng to these equations,for a typical neutron starwith M = IOtTc_lOT_,

R = I0 km and a neutron Ferml energy of 50 Mev, fhe URCA neutrino luminosity in

(5-59) and the plasma neutrino lum|noslty in (5-60) are both equal to the value

2 x 1036 ergs/sec. In this case the effect of the UREA process is not large (because

it increases the total neutr|no lumlnosity only from 2 x 1036 to 4 x 1036 ergs/sec).

However, by examinlng my results it appears that the neutrino caollng rate at the

critical temperature around 109 °K might be greatly affected by the inclusion of the

UREA process. Because the URCA process plays an important role in the dynamic

collapse of a star, it should not be surprising if it also becomes important during the

subsequent cooling° It is deslrable that a more detailed formula for the neutrino

luminosity due to the UREA process should be derived and appiled to my models, so

that its quantitative effect on the present results might be determined.

V-7 COOLING TIMES

The cooling Hme _ is computed from the carefully prupared data of the last

sections and from the ,%llowlng relaHon:

9Z-- L(w)
(5-61)

I
where U is the to,_al energy content of a star, or ._he total internal energy, and

L(U) is the total lurninosi_y (Lb) +Lph ) expressed a: a funct._on of U, as in Figure

48° If the above in_'_gra_'_on is cerHed ou_ from the initial internal energy U 1 to

the final internal energy U2, then'Z' gives the t._me interval during which the star

has cooled from a higher temperature T 1(where the total energy content is U1) to a
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lower temperature T 2 (where the total energy content is now U2). In the actual

computation, a graphlcal method has been used. For a small interval of time /_t

in which the change of luminosity is small, _t,-" A U/_., where [- is the mean

luminosity in this interval. The period of time between the moment the star started

to cool until a certain later time (the age or cooling time of the neutron star) is then

found by dlvidlng this total period into small intervals and then by replacing the

integral of (5-61) by the sum over the small intervals. Thenr

For this purpose, graphs such as Figure 48, plotted for all six models, were used.

The results for each type of model (V_3"r'l , (V_ II), etc._ are tabulated in the

last two columns of Tables 28 through 33 for model atmospheres of pure i_'on and pure

magnesium, respectively. The cooling curves are shown in Figures 50 through 53. The

detailed behavior of cooling is di,Cferent for each different type o_ model (each has

different internal nuclear physlcs_ mass_ density, radius and composition). But in

general the follow|ng conclusions can be drawn° (i) Until the surface temperature

drops to the range 1 mi!llon to 10 million degrees, the star cools off mainly by the

neutrino process. Betow this point cooling proceeds mainly through opticcl radiation

from the surface. (ii) The time scale is very short at high temperatures° For instances

the period of time during whlch the surface temperature is about 50 million degrees

and the internal temperature is from about 5 to 10 bil![on degrees l_sts only from

about a second to a few hours at most even w_th only the plcsma neutrino p;'ocess of

cooling. At higher temperatures (say_ Tin ~ 1011 °K), other neutrino processes such

as those involving _ neutrino_ become important and the time scale is expected/o
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become much shorter (with a peak at around Tin ~ 1011 °K, _ ~ 6 x 1011 gm/cm 3

and _' ~ 10-5 sec). (17) This result confirms our earlier assumption that all neutron

stars (of any kind) hotter than those with T e ~ 5 x 107 °K (that is_ Tin ~ 5 x 109 OK)

would cool off too _ast to be observed, When the surface temperature becomes

about 2 x 107 °K_ the cooling rate is still quite high and the stars are from about 10

minutes to 20 years old, Stars with Te --1 x 107°K are about 1 day to a few

thousand years oldt and those with Te =5 x 106 OK are about a few months to

20tO00 years old. However_ for eli the models considered (all the models pessible)_

it takes about 105 to 106 years to cool down to the point where Te =106 °K,

Hereafter_ the difference in the cooling behavior between different types of model

is relatively small and after about 107 to 5 x 108 years from the time of its birth

(through a supernova expIosion)_ the surface temperature o'i: all our models drops to

about 10 thousand years, Cexls opacity code broke down at temperatures lower

than about 104 OK and !'herefore cooling beyond this point was not followed in this

research, However_ it is expected that nothing interesting would happen at these low

temperatures. A neutron star would most likely continue to cool down, asymptoti-

cally approaching zero-temperatureo Therefore, t'he llfe times of neutron stars are

expected to be about !08 to 109 years, Of course_ long before thc.b they will

become too faint ever to be detected. From the discussion in the next sec|qonr it is

impossible to detect neu_'ron stars cooler than Te .~ 106 OK and the li_e times of

detectable neutron stars may therefore be tentatively set a_ from 105 to 106 years

(the time it would take to cool down to T e ,-,, 106 OK),
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Figure 50 shows the cooling curves of our six models with iron atmospheres

(solid curves correspond to V_ type models and dashed curves to V_, type models).

The point at which the plasma cooling rate and the optical cooling rate become equal

(L_ = Lph) is shown by a cross for each curve. The figure shows that for the same

type of model (either V{3 or V_,)t the lighter neutron stars have a lower surface

temperature than the heavier ones up to an age of about 105 years, but after _hat

heavier neutron stars cool off faster so that the total life t_mes of the heavier stars

are somewhat shorter (about 107~ 108 years) than those of the i lgher stars (]08,`, 109

years). Among models of the same mass and same surface temperature, Vy type

models are seen to be much younger than V_ type ones. A graph similar to the

ones for Fe, atmospheres is shown for _g atr._ospheres in Figure 51. Th!s contains

the same notation as was previously used, and the general behavior is seen to be

also the same° in the discussion of this section, the moment at which a neutron star

is formed (or the moment of a supernova e,'_'plosion) is defined as its time of birth

(the point from which its age is counted).

To see better the effects of different composition_ cooling curves for the same

type of models of the same mass but of different composition are shown in Figure 52.

Solld curves represent mode!s with iron atmospheres and dashed curves those with

Mg atmospheres. We see that for Te > 106 OK, Fe models are somewhat cooler at

a given age than the corresponding Mg models_ but t_;e reverse occurs when

Te < 106 °1_,. Consequently_ the total lifetimes of Mg models are somewhat shorter

than those of Fe models. This is explalnod as follows, For th_ hotter neutron stars

(Tin _ 108 ~ 9 OK, Te >106 " 7 oi_,) which are cooling mainly by a neutrino

process_ the age of the star is determined by the total in_ernal energy U and the
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neutrino luminosity L22, both of which depend on the internal temperature of

the star but which are independent of the atmospheric composition. Therefore,

neutron stars of the same internal temperature and other internal properties (mass,

nuclear forces, etco) have the same age. However, neutron stars of the same internal

temperature have a higher surface temperature if the atmospheric composition is

tag instead of Fe because the opacity of Mg is genera!ly smaller than that of Fe,

as can be seen in Figure 42. However, a cooler neutron star (Tin <108 °K,

T e < 106 °1_) which is cooling by optical radiation from the surface only is more
P_J

strongly governed by the surface composition, because now luminosity, and not only

Te, depends on the opacity of its atmosphere. The optical lum[noslty is larger for

Mg than for Fo (see Figure 48) at the same U(or Tin) because of the lower opacity

associated with Mg_ Therefore, if one compares the cooling time of two models,

identical in every respect except that one has an atmosphere of Mg while the other

has one of Fe, the cooling time of the former must necessarily be shorter than that

of the latter when the optical luminosity predominates. As a star cools down, this

effect of surface composition on luminosity (wl_ich shortens the cooling time of hag

models as compared with that of Fe models) eventually becomes more important than

its effect on surface temperature (which makes the cooling time of Mg models longer

than that of Fe models), and finally 'Z" becomes shorter for the cooler stars with Mg

atmospheres than with Fe atmospheres. On comparing Figure 52 with Figures 50

and 51, however, we see that the effect of d_fferent composition is rather small

compared with the effect of different mass or of dlf_e_ent nuclear potential in the

interior.
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The most important range of temperature from the point of view of one

trylng to observe the star is 106< Te < 2 x 107 °K_ as will be seen in the next

section. Therefore_ this portion of the curves is enlarged in Figure 53. In this

critical range, the variation in the calculated age of a neutron star with different

nuclear potential is quite large. For instance at Te = 107 °I(, a star of 1M O may

be only about a few years old if a nuclear potential of type V7 is assumed or it

could be as old as 2500 years if a VI3 type potential is chosen. At a slightly lower

temperature_ T e =5 x 106 °K, models of 0.2 M@ (the IJghtest models) may be only

a few months old with Vy and about several years old with V_ . The variation

of age with mass is still more drasHc. In ti_e detectable range of surface temper-

ature shown in Figure 53, the possible age of a stable neutron star is seen to be

anywhere from a_out one day to about 106 years°

V-8 OBSERVATIONAL PROBLEMS-- DETECTABILITY

a. General Remarks

As mentioned at the beginning the main motive for starting this research

was to see whether neutron starst if they exist, would be detectable. Interesting

theoretical data have been accumulated to answer this question.

The conclusion is that (i) it appears practically impossible for earth-bound

astronomers to dhectly observe these stars even through the world's largest telescopes,

(ii) some of the neutron s_-arsshould be detectable by x-ray telescopes mounted on

rockets or artificial satellites above the earth's ctmcsphere_ provided that Pianck's

radiation formula is still applicable on the surface of such hat stars_ but (iii) even
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aboveour atmosphereit is almost hopeless to detect these stars outslde the narrow

range of wave lengths in the soft x-ray regions.

To explain the above concluslonsl let us first go back to Table 25. If we

assume that neutron stars emit radiation as black bodies, the wave length max

giving the maximum intensity in the spectrum is simply given by

X (cm) =hC/'(4.9651 k Te)= 0.2918/Te(°K)max
(5-62)

This shows that when Te ~ 106 to 10701(, the maximum comes in the soft x-ray

region, 30> X max > 3_1 while this maxlmum shifts to the ultraviolet region when

Te falls to around 105 ~ 104 °1(.

The earth's atmosphere is transparent to radiation only in the regions

3000 ,_ < X < 7000 )_ (visible), 8000 _ < _ < 12000 _, (infrared), and 1 cm

< X < 10 meters (microwaves). Interstellar matter consists mainly of hydrogen and

interstellar absorpHon is quite high near the lyman continuum (ultraviolet region)

but it is practically negligible outside of this range.

it is seen in Table 25 that the total optical luminosity of hot neutron stars

with Te > 106 °K ( X < 30 _) is comparable to or higher than the solar luminosity,
max

and that at To ,-, 107 °K_ most of the energy output is concentrated in the x-ray

o
reglon around 3 A. Since interstellar gases are practically transparent to radiation

of these wave lengths_ quite a large flux of _,-rays from such a hot neutron star should

be detectable jus_ above our atmosphere (here, for instancet L,-, 103 L 0 for

T e ,-, 107 °K). However, as was seen abovet our atmosphere is opaque to x-rays and1

consequently1 most of this high flu-c does not reach the earth's surface. The fraction
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of the radiation which passes through our atmospheric window is given by (17)

Ao (e.. 1)/')o (-e'F-'-'---l"JwhereX= andrea- "
Then_ when Te ~ 107 °l(r only about 10-8 of the total flux would

reach an earth-bound telescope. Although the total energy output of a star's surface

at this temperature is quite high (L ~ 103 Lo)t its luminosity would appear to be

only 10-5 Lgto an observer on the ground and therefore too faint to be observed

unless the star is practically within the solar system.

Neutron stars hotter than thls_ Tin _ 1010 OK and Te >,,,5 x 10 7 °Kr cool

off too fast to be observed (%" < 10 hours) as seen in Section V-7 and they should be

excluded from our consideration.

Cooler neutron stars with Te < 106 °le, are hard to detect even above the

earth's atmosphere. Neutron stars with 104 < Te < 106 OK emlt radiation with a

maximum intensity in the ultraviolet region where_ as we saw above_ the interstellar

absorption is quite high. Consequently_ this portion of the spectrum will not reach

us. The fraction of radiation with longer wave lengths (to which interstellar gases

are almest transparent) is too small to produce an energy flux sufficient to be detected.

For instance_ at Te = 5 x 105 °Ki about 5 x 10-5 oF the total flux can reach us. At

this temperature the total lumlnos;ty of the star is about 10 -2 L_r and so we will

receive only L ~ 5 x 10 -7 LO, whether we are above or below our ahnosphere. That

is1 the chance of our observing these cooler stars (104"< Te < 106 °1() whose maximum

energy output is in the ultraviolet region is even less (both ebove and below our

atmosphere) than that of our observing from the surface of the earth the heifer neutron
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starsconsideredearlier, becauseof the strong interstellar absorption of radiation

in the ultraviolet range°

Finally let us consider even colder neutron stars with Te_lO 4 °K° Here

the maximum of the Planck_s spectrum comes in visible region, but at these temper-

atures, the total luminosity of the star is less than 10-9 LO, worse from the s;'and-

point of being observable than all the previous cases.

V/e have exhausted, in the above, all possible ranges of temperature which a

neutron star can have and are led to the three conclusions summarized at the beginn-

ing of this section° Combining the abov_ considerations wlth the results of the last

section (Figures 50 to 53), we see that some of the neutron stars which emit x-rays

can surely last long enough io allow us to observe them through rocket-bound

telescopes in outer sp_ce_ provided that these stars can be treated as black bodies

and that their mass is not too small. (For instance, Figure 53 shows that a neutron

star of M ~ Oo2M® and Te ~ 107o1( can last only for a 'Few days or lesso)

It was recently suggested (22) that a large fraction of the ultraviolet light

may be converted into visible light (Baimer recombination ilnes) if a neutron star is

surrounded by a gos cloud of density > 20 atoms/cm 3 and that in such a case hot

neutron stars (Te ,-" 107 OK) may be just barely seen by terrestrial telescopes°

V/hat is outlined above is _urther explored in detail in Section V-8c, but

before that let us review the experimental background briefly°

b. x-ray Obserwfions

Since it became possible to exploro outer space through rocket-bound

instruments above the earth's atmosphere, the experimental evidence of x-ray sources



371

outside the solar system have been reported. (18_19'20) From analyzing the results of

three flights, Giaconni's group (18) concluded that a strong x-ray source of temper-

ature about 8 million degrees is located near the galactic center. They maintained,

o
furthermore, that this source has an effective wave length of about 3 A, is not

associated with the earth's atmosphere nor with any members of the solar system,

and is not ascribable to any form of auroral activity, but is of galactic origin. Besides

this major source, two other much weaker x-ray sources were detected, one near the

Crab Nebula and the other somewhere between 20 and 30 hr right ascension and

between + 10° and + 50° declination.

Frledman's group reported(20) that two new x-ray sources had been detected,

one in Scorpius and the other in the direction of the Crab Nebula. The stronger

source, in Scorp|us, with an angular size less than 5° and with an energy flux of

1.4 x 10 -8 ergs/cm 2 - sec - _ with a nearly flat specs'rum in the wave length

range of 1o5 _ to 8 _,, was located at 16 hr 15 mln. right ascension and - 15°

dec!inatlono The weaker source of flux 2°0 x 10-9 2 _ oergs/cm -s..c - A in the same

frequency interval as the former was found to coincide in its location wi'_h the Crab

Nebula to within 2° .

No optically prominent features are known to be present at the location of

the Scorpius source, nor have any unusual stars, such as r_dlo stars, been found thare.

This is a region thickly populated with faTnt stars but with no visible nebulosity.

On the contrc_ry, the Crab NebuEa is a well known source of vlsib[e and radlo

synchrotron emission°
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Fisher (19) reported the results of his scanning of the night sky for possible

x-ray emissions, but no agreement is apparent between his results and those of other

groups. Friedman's group attributes this to the fact that the detectors used by

Fisher are about 13 times less sensitive than theirs, and argues that because of this

difference in instrumentation the two sources detected by Friedman's group should be

insignificant compared with Fisherls background. The source near the galactic center

reported by G[aconni's group(18) is most likely the Scorplus source reported by

Friedman's group. (20) A slight discrepancy between the positions reported by these

is qyite
two groups/to De expected, considering the very broad field of view used by the former.

The latest x-ray measurement was made during the eclipse of the Crab Nebula

on July 7, 1964. it was reported (20') that the size of the x-ray source in the Crab

Nebula as estimated from the change in fiu-¢ during the eclipse is about 1 light year.

This eliminates the posslb[iity that the blackbody radiation from a neutron star is the

major cause of the total measured x-ray flux from the Crab Nebula, but does not

eliminate the possibility that there is a neutron star in the Crab Nebula, as is shown

in the next section, V-8c.

c. Discussion

[n the 8th column of Tables (28-33), the maximum wave lengths _max'

corrected for gravitational red shift, are lis_ed. All other spectral shifts are negl_g._ble

(for ins.'ance, the doppler width is only about 0.001 _)o

Assuming that the interstellar absoq_tion is negligible (which is a justifiab!e

approximation in x-ray regions) and that the total measured x-ray flux comes only

from a neutron star rcdiating as a blackbody, the distance d to the x-ray source
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(a neutron star) is easily cclculated through the relation

d = L/(4CFF _ (5-63)

where L is tl_e total optical luminosity of the star and F is the flux (ergs/cm2-sec)

of x-rays measured just above out atmosphere.

At the present stage, because of the paucity of experimental data it may be

dangerous to be too specific in numerical comparisons but I think that by comparing

some of the measured quantities with those predicted by the theoretical models one

might gain some insight into the problem.

The apparent temperoture of the Scorpius source (without the red-shlft) was

measured to be about 8 million degrees (18b_ (Section V-8b)° The real temperature

is easily found by blue shifting the observed value; that is, the actual surface

temperature Te --(1 +_) 8 x 106 °K, where _ = _ ;_/X is the gravll-atlonal red

shift. For a known Te, the corresponding age is found from a Te- "L_" curve such as

that shown in Figure 53. The results are listed in the table below° The distcnce

calculated from (5-63) wffh F =10 -7 ergs/cm2-sec (approximately the measured flux

from the Scorplus source) is expressed in parsec (1 parsec = 3.084 x 1018 cm = 3026

light years)°

MODELS

Te(real) (OK)
i

AGE I Fe

Distance(psc)

Xmo×(_)

(1 i " 'M ,V )(Oo6M ,_ )® 13__! e_
J

z400 yrs| 300 yrs

2900 yrs 1950 yrs

(O.2M,V_)_(_.m,V_.)IO.,_,_,V_,(0.2Mo,V_)I
O _-,, O oL _ t o t

0o02:2 i0o30_ | 0.125 !0_013_. I
3_23xt06!1.04×1o71910o×1o618.12×1o6 -_

10 daTs t 5 days /

I yr lI 3 days

,.,.,800 ._ j,-.,1800

3°3 I 3°65 _ "i 3,,4 J 3.z5I

i200 yrs / 27 yrs

i600 yrs i 26 ;,rs! ,-,800 ,-,900
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According to this table, the maximum intensity comes at around 3.5 ,_, the possible

age can be anywhere from 3 days to 3000 years, and the corresponding distance from

about 2000 to 400 parsec. The wide range in age exists because of differences among

the stars being considered: differences in the nuclear and particle physics which govern

the interior, differences in the surface composition and most important, differences in

mass. The youngest model has M,-' 0.2 Me, R --, 24 kin, a/_lg atmosphere and is of Vy

type, while the oldest (~ 3000 years) has M-_ltv_, R ~ 5 kin, a hag atmosphere and is

of type V_.

The Scorplus source was used for the above calculations. Therefore, let us

look into this source in detail. There is no nebulosity, no visible or radio stars at the

location of this source, but a strong x-ray emission was detected. If future obser-

vations reveal that it is a point source, it is most likely that it is a neutron star. As

noted in Section V-8a, a neutron star, by itself (that is, in the absence of surrounding

gases or heavy nebulosity in i_s vicinity), cannot emit a detectable amount of radiation

except in the form of x-rays (no visible, no radio synchrol-ron emission). Among the

several possibilities presented in the above table the models (0.2 MO, V_), (0°2 M e,

Vy) and (1.1 Me, Vy) should be eliminated, because for any of these to be the

Scorplus source the corresponding supernova explosion shou!d have occured less than

30 years ago, but no supernovae ware observed in Scorpius within this century.

It may be interesting to compare the possible age of the Scorpius source

presented in the above tab!e with some ancient records. Thb corresponding supernbva

explosion could be a celestial event recorded in one of the following years: (23)

134 B.C.,436 AD., 827 AD0, 891 A,D, and 1585 AD. Some of these may, however, be
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cometsor ordinary novae. Some of these were seen not quite near the x-ray source,

but the accuracy of the location in ancient records is often doubtful and none of

these should be eliminated as possibilities.

The event in 827 A_D_appears to be closest to the observed location of the

Scorplus source. It was noted by Humboit (1850), that two Arabian astronomers,

Haly and Giofor Ben Mohammed AIbumazar, observed a new star in Scorplus as brlght

as "the moon rn her quarters" which lasted for four months, but the date appears to be

no more certain than the first half of the ninth century. If this is the supernova ex-

plosion which formed a neutron star now emitting a strong x-ray flux in Scorpius,

then the age of the star should be about 1200 years, and from the above table the

heaviest model (2 Me, V1,) wlth an iron atmosphere is seen to agree best with the

observations, for which case the source is e_:pected to be about 800 parsec away.

It is strange, however, that such a spectacular event should not be recorded

anywhere except in the Arabian records. It is at least not present in _he Japanese

records_ which were thoroughZy searched, a_though its omission here may be due to

bad weather such as usually prevails in Japan at the time of year o.c the Arabian

observatlon. D.M. Dun'.op, afl_er e-',amining the original Arabian sources, reported (61)

that it is not certaln whether this new star observed by Arabs was a supernova or a

comet. The above table indicates, however, that it poses no trouble if it were a

comet or even if none of the possible supernovae considered above were the mother

of the neutron sl'ar candidate in Scorpiuso For instance, if the neutron star is cbout

1 Me, of the Vp type, and has a Mg atmosphere, the table shows tha_" the mother

supernova should have occured at about 1,000 B.C.,(and would be about 400 parsec
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away), which is long before any of the ancient supernova events considered above.

It is not surprising that no records of such an old event should be available. It should

also be noted that we may arrive at a model even older than any of those listed in

the I_._ceding table if we use a different possible nuclear potential in the interior,

and that it is, therefore, quite possib_e l'hat the event in question occured in pre-

historic times, it is also possible that the neutron star was formed through something

much less s?_tacular than a supernova o::plosion.

On examining the results shown in Tables 28-33 and Figures 50-53, we notice

the complexity involved in the problem. For instance, it seems improper to assign

a definite value to the number of neutron stars at a given temperature from just

simple statistics and a knowledge of the totQI number of supernovae in the universe,

even if all supernovae end up as neutron stars and even if we neglect all other

possible formation mechanisms of neutron stars, because, for instance, we do not

know how the remnants of supernova e:_plosions are distributed among possible models

and also because the cooling rate depends drastically on the age and the internal

properties of tile star, such as its mass, radius and the interaction potential present.

Consequently the time required for a neutron star to cool down to a given temperature

varies very much from model to model. For instance, if M,-" 0°2 MQ, it takes only

a few days to cool down to T =107 °i_. otter the formation_ But if M'-" 0.6 M 0 and

a V_ type potential appl_es, this cooling takes 3,000 years, while if the potential

is the Vle type, the same star requires less than a year to cool down to the same

temperature.
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It is, however, possible to make less restricted estimates. For instance, the

neutron stars detectable in the present frequency range (1.5 ,_ ,< X < 8 ,_) cannot

be among the lightest enos, because in order that the maximum radiation be in this

frequency range the surface temperature Te must be 2 x 107> Te > 5 x 106 OK, but

for such temperatures the lightest neutron stars (~ 0.2 MO) cool too fast to be ob-

served. For instance, it takes for models of 0.2/v_ to cool down to 5 x 106 OK

(the lower limit in the preceding temperature range) and Xmax N 7,_ only a year

or less if the potential type is V 7 and less than ten years if it is V_ . (See Figure 53

and Tables 28-33_)

Next, I should like to show tllat, according to my models, it is quite possible

that nothing would be detected at the location of a known ancient supernova,

were its remnant to be a neutron star of sufficiently small mass. As an example, let

us consider the Crab Nebula, in which a supernova explosion is supposed to have

occured in 1054 A.D. This is a strong source of both visible and radio synchrotron

emission as well as a region of high nebulosity, which is believed to be due to the

existence of massive expanding sholls expelJed by the supernova explos_,_r, in

1054 A.D. The size of the x-ray source in the Crab Nebula was repor_'ed to be about

one light year (Section V-8b), and this indical-es that the maior x-ray flux is related

to the hot gases in the outer expanding sholls_ However, this does not eliminate the

possibility that there exists a tiny dense neutron star near the center of the Crab

Nebula. To visualize the situatlonl lot us tentatively cssume that there is a neutron

star in the Crab Nebula and examine whether it should be detectable or not. Its

surface temperature at present (910 years after the explosion) is determined from the
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theoretical models.

read from a Te

corresponding

That is, the To of various different models at "/2' =910 years is

- "L" curve such as that shovm in Figure 53. From a given Te, the

_max (with red shifts) is determined from Tables 28-33. The lum[noslty

of a star at a given Te has been calculated and plotted already in Section V-6a.

Inserting d = 1100 parsecs (our distance from the Crab Nevula) and various values of

L into equation (5-63) we calculate the total flux coming from the neutron star only.

The properties of the hypothetical neutron star in the Crab Nebula(" its surface temper-

ature Te, maximum wave length ;kmax, internal energy U, optical lum_noslty Lph,

and the flux Fn to be measured just above our atmosphere which comes from the

neutron star only and not from the surrounding expanding shells) are listed below, both

for models of Fg and Mg atmospheres.

MODELS i (IMe,Vp), I(0.6Me,Vr,)I(O.2Me,Vp);,
I i

8.1xlO 6 ! 2.9x106
tTe(° K) 1 1.23x107

XmoxC ) I ~3

log U(ergs) !t
j(ergs/sec)l MgJj

i
Fn i Fel

(ergs_cm2! Mg
-sec) ', I

47.65

36°68

37.08

3.30xl 0"8

8o31x10 -8

~4 ,,,12

(_M_,V_)i(1.1Mo,V.)
, j

9o33x106 5,63x106 I

,,,4 I ,-,5 ;
1

(0.2Mo,Vl,)

1o68XI 06

~2O
I

47.45 46°92 4r3.06 i 47_96 147.28

' 3 .78 34.:5 i3 .2, ' 34.4,
36.38 35.48 j 37.34 !36.60 o' ,34,83 ]

4.16x10 "9 3.88x1_101 3 98xl 1o77x10-1(_

The above table shows that _f the neutron star has/vt_ 0.6 M e for the Vr_ type and

M _ 1 M® for the V1, type, the maximum intensity comes within the range
o

3/_< Xmax< 6 A and the x-ray flux is 10 -7~ 10-8 ergs/cm2-sec which is corn-

parable with the flux measured in the Crab Nebula. But if i_s mass is about t/4 to

O

1/5 solar mass the maximum intensity comes at around 10 < ;k < 20 A, the surface
max
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temperatureis only a few m_lliondegreesand the flux is reducedto about 10-910 -10

ergs/cm_-secwhich is too weak for detection. In the abovecalculations, the inter-

stellar absorptionwasneglected_but this may not be justified in this wave length

range. V/henan appropriate correction is applied the flux will become even less

than the values calculated above. The conclusion is that the neutron star in the

Crab Nebula, even if it exists, cannot be detected if its mass is sufficiently small.

It is also possible that a medium weight neutron star exists near the center of the

Crab Nebula and emits x-rays of flux ~ 10-8 ergs/cm2-sec but thct _t cannot be

singled out because the expanding shells which surround the star also emit similar

x-rays_ perhaps of somewhat greater intensity.

While neutron stars cool too fast to be observed at the critical stage where

3 x 106< Te < 3 x 107°K, some of the medium-weight and heavy neutron stars

remain luminous for a long time. For instance_ a 2 M o neutron star of type Vy

about 400 parsec away and another of 1 M o and type VtS about 100 parsec away

o
both having TO = 7 x 106 OK and Xmax "" 5A would produce an output intensity of

10-7 ergs/cm2-sec even as long as 10,000 years after their fo.'mation. Most of the

medium-weight and heavy neutron stars last as long as 105_6 years before they

become cooler than Te = 106 °K (Figures 50 and 51). _t is remarkable that once w_

get outside of our atmosphere, neutron stars much further away than any of the ob-

servable white dwarfs can be within reach of our detectors i_ they are massive and

hot enough. For instance_ a massive, hot neutron star of the Vy type with a mass

,_ 2 Me, radius ,-, 10 kin, Te ~ 1 ~ 2 x 107 °K (_7_x 3 ,_), when about 103 years old,

would, even if it were as far away as 2,000 to 3,000 parsecs, produce a flux of
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about 10-8 ergs/cm2-sec iust above our atmosphere. With the sens|tivity of the

present instruments1 these stars are only just barely detectable, gut if the sensitivlty

were increased by a factor of 1 say, 10 2 quite a few neutron stars might be "vlsible."

V-9 CONCLUSION

Whether a given neutron star is detectable or not depends largely on the

physical parameters involved, especially its mass. Among the x-ray sources which

have already been dlscovered cmd those which will be dlscovered in the future, it

is quite possible that some are not neutron st'ars, while it is also possible that some

others are indeed neutron s_ars. \Ve have seen that while it would be dlfflcult to

detect light neutron stars, some of average-weight and massive neutron stars should

last long enough to permit their observatlono

Should future observations reveal that none of the celestial x-ray sources

are neutron starst this could indlcate that the ordlnary Planck's radiation formulae

are not applicable on the surface of neutron stars because of the extraordinarily high

temperatures which ob_'aln there_ or it may be that some of the other fundamental

assumptions made in this research are wrong. For instance, a neutron star may not

be formed through a supernova explosion, or perhaps in such extremely dense matter

some peculiar phenomena occur whlch cannot be explained by the present theories

of general relativity and high energy physics. On the of-her hand, _or the very same

reason1 neutron star problems would provide strong support for some of the existing

theorias of the las_est stages of stellar evolutlon, particle physics and general re-

latlvlty upon which this research is based, should the results of research on neutron
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stars such as presented here turn out to agree well with future observations. If such

agreement is not found, the discrepancies may provide us with clues to some of the

puzzles which today exist in the fundamental physical theory.

In any case1 improvements in the techniques of detection are quite badly

needed. Some possible improvements in x-ray measurement which would help us

to distinguish between neutron stars and other x-ray sources and to better understand

the properties of neutron stars are: (1) the selection of a different wave length range_

especially on the shorter wave length side of the peak°

X < I ,_ for the Scorpius source wii-h the peak at _max

For instance, by choosing

,_ 3,_, we should be able

to see a non-flat spectrum (due to a sharp drop of intensity in blackbody spectrum

on the shorter wave length side) if the radiation comes from a neutron star; (ii) with

sufflciently high sensitivity the intensity discontinuity at K (and L) shell absorption

edges might be detected; (ili) by increasing the angular resolution of the instrument

one could determine whether the source is a point source or en extended one, A

neutron star should be a point source° The pos;tron of the absorption edge is a

characteristic of the surface composition ({:or instance, the K-shell absorption comes

o O

at 1.3 A {:or Fe and at 6°3 A for Mg). The shi{:t of the observed position from the

expected posit;on is then practically due to the gravltaHonal red shifb which is

proportlon_i to M,/R_ The red shift measurement is very use{:ub because it gives both

the surface composition and the ratio of mass to radius, which can be compared with

the prediction of the theoretical models. Beside the above considerations, iF some

of the x-ray sources are identified with n_utron s;ars_ the distance, the age and cool-

ing rate of the star can be calculated by a suitable combination of theoretical and
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experimentaldata(especlally the measuredflux),. If_ further, the sourcecould be

associatedwith a knownsupernovaexplosionof knowntime and dlstancet we would

have morephysical parametersto compareour theoretical modelswith. in this wayt

it would be possibleto select a few models (or a unique model} from a number of

various possible models. One of these methods alone may not be very significant but

when as many as possible are used in a suitable combination_ the problem of neutron

stars may in the future provide a powerful tool for studying some of the fundamental

theories in physics and astronomy.

Some possible refinements on the present work might be (a) the development

of a better theory of interaction forces between sub-atomlc particles, especially at

the critical region of 1014 gm/cm3_ _c _ 1016_5 gm/cm 3 (b) the application of

degenerate compton scattering to opacity in the high density, high temperature region,

(c) the derivation of an accurate URCA neutrino luminosity formula (and similar

formulae for any other neutrino processes of appreciable importance if any) which

could be applied for the cooJlng of neutron stars and m'.'ght indicate some appreciable

change in the cooling behavior a_ the critical point around T ~ 109 OK (the corres-

ponding Te ,,, 106- 107 °K)_ (d)the derlva_on of an internal energy expression which

includes the potential and not only the kinetic term, the application of which may

change my final results for total energy content of a neutron star by a factor of

about 2, (e) more quantitative work on the diffusion problem, (f) similarly for the

convection problem, (g) the inclusion of a degree Qf partial ionization on the

equation of state in atmospheres (this was taken into account in the opacity calcu-

lations but in the equation of state it was simply assumed that all electrons are
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ionized whlch is a iustiflable approximatlon for the hot models but perhaps not for

the cooler ones, and (h) the inve:tlgation of cooling behavlor at the coldest limit

Te < 104 °K. Most of the improvements suggested above are not necessary at the

present stage, because the paucity of observational data does not permit their validity

to be checked. However, the first four of the above refinements may produce ap-

preciable changes in the final results of this dissertation.

It should be emphasized that models at the two dlfferont possible extremes

of neuclear potential and atmospheric composition have been developed in parallel

in thls research in order to avoid as far as possible the danger of drawing conclusions

from too limited models. The main approach taken was, thereforet to set upper and

lower limits1 which are consistent w[lh physical prlnciples, to the possible models.

It seems most likely that an actual neutron star should be represented by a model

intermediate between the two extremes.
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In a Grand Canonical ensemble, the Grand partition function Z ise(50)

- N (A1-1)

1
_c

(A1-2)

(AI-3)

p_hemlcal potential, N = total number of the particle, n---number density.

For fermions and bosons,

__= -__. log (l+-7..)wlth

where _._ is defined by

_/_
_ C

,.-/x-e,-)/,-_ - e,/..c
:x,,- e = ;__ (A1-5)

(AI-6)

Then from (A1-2) and (A1-3)

_ _/# "")'s')- "iV,, _"_ : ,-- _" "D-('_"_v," (A1-7)--c -< "c
Consider an assembly of nuclear matter conslstlng of nuclei (A, Z), free protons P

and free neutrons N in equilibrium, with respectlve number denslty ns for the

nuclei

S, p, n

(A,Z), np for free protons and nn for free neutrons. Using subscripts

physlcat
for/quant..'ties of the nucleus (A, Z/,proton and neutron respectively, the

above statistical equilibrium condltion applying to each become:



V 2:: \_t F ,q:

v _ < _-[</Iv,
because all are in a common box of volume V at the same temperature

equilibrium, with the additional condblon
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(A1-8)

= kT in

binding energy of the nucleus s, namely,

Qs is the (A1-9)

Q_ _ -c*( r%- _ _ - M N _ (A_-_0)
where Ms, Mp, M n are masses of the nucleus (A,Z), proton and neutron, At this

point two approximations are necessary: (1) to a first approximation the energy of

the excited states is neglected, and (2) the assumption of a perfect gas is employed,

which is justified for heavy nuclei, protons and neutrons in the who!e density range

to be used in this section, namely _:or/_ < 101! gm/cm 3.

where

For a perfect gas, it is well known that (p. 65 reference 50)

/;¢ _v (A1-11)

(Al-12)

so that

"1"--3 > 3

A_ r A_
)

for each constituent particle,

01_ : {X)_ "L_I (A1-13)

x2
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where the partition function including the spin orientation is expressed as

(_k) : ,7- (_3", _-1,) G'7_- _i/_ all levels i. (AI-14)
_ over

From (A]-9) and (A|-|3)., we get
z_ N_ 3

For protons and neutrons Up =_n = 2 noting I = ½ for both, with no excited s_ates.

Also noting /-'_p= -_i/i _2"/T,I'_-'_-I-?'%/_,_ , ,_,_- '_,/_"_-'I_A _-')-_T) _

(where M = the atomic mass unff), (Al-15) reduces to

¢I(._._)=i_u(A,7) N Z

0't_01 qT_ _ (A-,) ---,_,

where ns,Q s and Us are re-expressed as n(A,Z), Q(A,Z), and u(A,Z), and the

relations N s + Z = A, _ =kTI _ = h/2_ are used. u(A,Z) is the same form as
$

(Al-14). Subscripts s are dropped.
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A PIE.ND IX 2

M was defined as U(R), the solution of (1-8) and (1-9),

From (1-45) and (1-37),

O

From C1-46), (I-45) and (1-8),.

-M-H
P

From (1-8)

(A2-I)

(A2-2)

R

(A2-3)

From (4-7)

a I was defined as (4-2),

a1

=1- M
Mr

(A2-4)

/i' --1- H_[A2-5)My4.
N was defined as (1-44)

"2. 42Z
tV= _qt-I_

Therefore

N (_IH= _ 'J- _4_(_) "

Note that

(A2-6)

mH, proton mass, is a constant°
in Section i-4b

(A2-7)

o.r"Chapter I, J_'_m was

defined as

O hAZ ,01
, ).

where the sum is taken over all baryons present _.. M_._ is the mass and n_P is

the number density o_: the _ th baryon,
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If we have neutrons only , _m = n roll(the proton neutron mass difference is

neglectecj) 0Then (A2-7) becomes

W,_l,_: 4-_ _ .
from (A2-2)_and (A2-5) reduces to

o_,- I- M/1,.4i>_ ot
while this is not true for mixtures where jOm=_n kMk._- m Hn and hence

N mH,/- Mp. In the above, n is the baryon number density and N is the total

baryon number of the star°
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4 .,,)

R_ have theFrom the definition of the mean density _ , M = -_ _T _ we

relation

_oC J_ (where M is the mass and R the radius of
_ a white dwarf)

The average gravitational force within a white dwarf is

F= _ C-rM_ c_ _

The pressure

(A3-])

(A3-2)

P of the degenerate electron gas which supports the star has, from

Eq. (3-4a) and (3-4b), the following dependence on _ , and hence M and R (from

above relation),
%

R_

Therefore, _'I s/3

cb't _

(non-relativistic) (A3-3)

(relativrstic) (A3-4)

(non-relativistic_

(relativistic)

To satisfy the hydrostatic equilibrium condition d..P = _
dr

(A3-5) or (A3-6) must be equated. Then we obtain

H_/3 !_ _
"--- = const ----
R_ R_

M% H _
= const ----

R_ R_

-- M 1/3 =cons_ R-1

-I" M 2/3 =const

(A3-5)

while

(A3-6)

GMr (A3-2) and
r _.

(non-relativistic) (A3-7)

(relativistic) (A3-8)
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That is, for a non-relativistic electron gas, there is only one fixed value of R

that a star of a glven mass can have and still be a stable star. if the degenerate

gas is relativistic, there is no fixed value of R for a glven mass because the R's

on the different sides of Eq° (A3--8) cancel each other, and there is no equillbrium

configuration in this case.
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